@noi.ac - 170@ 数数
@description@
求有多少对 1 ∼ n 的排列 (a, b) 满足 \(m \le \sum_{i=1}^{n}\max(ai, bi)\)。
两个方案 (a, b) 和 (a′, b′) 不同当且仅当存在 i 使得 \(ai\not =a′i\)或 \(bi\not =b'i\)。
input
一行两个整数 n, m。
output
一行一个整数表示答案。对 998244353 取模。
sample input
3 8
sample output
18
对于100%的数据,1≤n≤50,1≤m≤10^9。
@solution@
根据我多年 OI 经验,题目短的不是水就是毒瘤。
但是这一次我好像A了这道题。
看到998244353是不是感觉整个人都不好了。
可以发现 a 中元素与 b 中元素的一一对应的关系确定了 \(\sum_{i=1}^{n}\max(ai, bi)\)。
所以我们可以只统计 a 与 b 中元素对应关系合法的方案,再乘上 n! 表示全排列。
另外还可以发现,题目所给的和式其中一个上界为 n*n(可以发现这是一个不是很紧的上界,但足够了)。故当 m > n*n 时直接输出 0 就好了。
当 m <= n*n 时,可以对于所有可能的 m ,计算 \(\sum_{i=1}^{n}\max(ai, bi)=m\) 的方案数然后进行累加。
我们为了保证 max 函数的唯一性,不妨令 ai >= bi 时 max(ai, bi) = ai;ai < bi 时 max(ai, bi) = bi。
考虑 a 中的 i,它要对答案产生贡献,只能和 b 中的 1 ~ i 配对;同样,对于 b 中的 i 要产生贡献,只能和 a 中的 1 ~ i-1 配对。
于是我们可以从小到大,考虑每一个数 i 在 a 序列与 b 序列中是否会对答案产生贡献。我们只需要知道在 i 之前有多少数未被配对。
由于 a 与 b 是一一配对,所以 a 中未配对的元素个数一定等于 b 中未配对的元素个数。
由此自然得出 dp 的状态定义:dp[i][j][k] 表示考虑到 i,i 之前 a/b 中有 j 个数还未被配对,此时凑出的和为 k。
通过分类讨论 a 中的 i 是否有贡献以及 b 中的 i 是否有贡献,得到四类转移。
注意当 a 中的 i 与 b 中的 i 相匹配时,根据上文的讨论 b 中的 i 是没有贡献的。
时间复杂度 O(n^4)。
@accepted code@
#include<cstdio>
const int MOD = 998244353;
const int MAXN = 50;
int dp[MAXN + 5][MAXN + 5][MAXN*MAXN + 5];
int main() {
int n, m; scanf("%d%d", &n, &m);
if( m > n*n ) {
puts("0");
return 0;
}
int ans = 1;
for(int i=1;i<=n;i++)
ans = 1LL*i*ans%MOD;
dp[0][0][0] = 1;
for(int i=1;i<=n;i++) {
for(int j=1;j<=i;j++)
for(int k=0;k<=n*n;k++)
dp[i][j][k] = (dp[i][j][k] + dp[i-1][j-1][k])%MOD;
for(int j=0;j<i;j++)
for(int k=i;k<=n*n;k++)
dp[i][j][k] = (dp[i][j][k] + 1LL*j*dp[i-1][j][k-i]%MOD)%MOD;
for(int j=0;j<i;j++)
for(int k=i;k<=n*n;k++)
dp[i][j][k] = (dp[i][j][k] + 1LL*(j+1)*dp[i-1][j][k-i]%MOD)%MOD;
for(int j=0;j<i-1;j++)
for(int k=2*i;k<=n*n;k++)
dp[i][j][k] = (dp[i][j][k] + 1LL*(j+1)*(j+1)%MOD*dp[i-1][j+1][k-2*i]%MOD)%MOD;
}
int res = 0;
for(int i=m;i<=n*n;i++)
res = (res + dp[n][0][i])%MOD;
printf("%lld\n", 1LL*ans*res%MOD);
}
@details@
就代码而言写起来还是很愉快的,甚至不足 1kb。
然而我当时好像一不小心把 m ≤ …… 看成 m = ……
不过还好最后改过来了,不然就直接炸掉了。。。
@noi.ac - 170@ 数数的更多相关文章
- 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)
3530: [Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 682 Solved: 364 Description 我们称一 ...
- BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]
3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...
- 【BZOJ3530】数数(AC自动机,动态规划)
[BZOJ3530]数数(AC自动机,动态规划) 题面 BZOJ 题解 很套路的\(AC\)自动机+\(DP\) 首先,如果长度小于\(N\) 就不存在任何限制 直接大力\(DP\) 然后强制限制不能 ...
- bzoj [Sdoi2014]数数 AC自动机上dp
[Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1264 Solved: 636[Submit][Status][Discu ...
- [SDOI2014]数数 --- AC自动机 + 数位DP
[SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...
- [Sdoi2014]数数[数位dp+AC自动机]
3530: [Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 834 Solved: 434[Submit][Status][ ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
随机推荐
- unity限帧的正确姿势
首先 unity上面要做一下手脚 打开后如下 接着.... 在Inspector面板 把V Sync Count 设置为不限制(Don`t Sync)(我们用脚本限制,不然unity自己控制不了它自己 ...
- Redis之高可用、集群、云平台搭建
原文:Redis之高可用.集群.云平台搭建 文章大纲 一.基础知识学习二.Redis常见的几种架构及优缺点总结三.Redis之Redis Sentinel(哨兵)实战四.Redis之Redis Clu ...
- CentOS 7安装与配置JDK8
1.检查是否安装过JDK 2.下载安装包并上传服务器 3.安装JDK rpm -ivh jdk-8u131-linux-x64.rpm 4.查看是否安装正常 java -version 5.配置环境变 ...
- ucore os 前初始化
BIOS 初始化完成说起 连接的时候指定了 -Ttext 0x7c00 也指定了 -e start 所以booasm.S 中的start 就呗钦定为程序入口了. 开始就是 屏蔽中断 初始化段寄存器 使 ...
- bzoj3064/洛谷P4314 CPU监控【线段树】
好,长草博客被催更了[?] 我感觉这题完全可以当作线段树3 线段树2考加法和乘法标记的下放顺序,这道题更丧心病狂[?] 很多人可能跟我一样,刚看到这道题秒出思路:打一个当前最大值一个历史最大值不就完事 ...
- oracle使用dblink跨库查询的例子
本文介绍了oracle数据库使用dblink进行跨库查询的方法,oracle dblink跨库查询教程,需要的朋友参考下. oracle dblink跨库查询 方法一:首先,创建数据库链接: 复制 ...
- 【洛谷】P1554 梦中的统计
P1554 梦中的统计 题目背景 Bessie 处于半梦半醒的状态.过了一会儿,她意识到她在数数,不能入睡. 题目描述 Bessie的大脑反应灵敏,仿佛真实地看到了她数过的一个又一个数.她开始注意每一 ...
- python的工具pip进行安装时出现 No module named 'pip'
现象: 解决: python -m ensurepip easy_install pip python -m pip install --upgrade pip #用于更新pip,默认安装的是pip9 ...
- Hdu 1068 最小路径覆盖
Girls and Boys Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- hdu 4722 Good Numbers( 数位dp入门)
Good Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...