题意

给你 \(n\) 个 \(01\) 串 \(S\) ,其中有些位置可能为 \(?\) 表示能任意填 \(0/1\) 。问对于所有填法,把所有串插入到 \(Trie\) 的节点数之和(空串看做根节点)。

\(n \le 20, 1 \le |S_i| \le 50\)

题解

直接算显然不太好算的。

\(Trie\) 的节点数其实就是本质不同的前缀个数,可以看做 \(n\) 个串的所有前缀的并集的大小。

我们可以套用容斥原理最初的式子。

\[\left| \bigcup_{i=1}^n A_i \right| = \sum_{k = 1}^{n} (-1)^{k - 1} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|
\]

这样的话,我们就可以转化成对于每个子集的交集了,也就是公共前缀的个数。

我们设 \(f(S)\) 为 \(S\) 集合内的所有子串对于 所有填的方案 的公共前缀的个数。

那么答案为 \(ans = \sum_{S \subseteq T} (-1)^{|S| - 1} f(S)\)

如何得到呢?由于 \(n\) 很小我们可以暴力枚举集合,然后枚举当前前缀的长度,直接计数。

  1. 如果当前所有的都是 \(?\) 那么意味着可以任意填 \(0/1\) 。
  2. 如果存在一种数字,其他都是 \(?\) ,那么意味着只能填这种数字。
  3. 如果存在两种数字,那么之后都不可能为公共前缀了,直接退出即可。

直接实现是 \(O(2^n n |S|)\) 的。可以把状态集合合并一下优化到 \(O(2^n |S|)\) 。(但是我太懒了)

代码

实现的时候不要忘记是所有填的方案。

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("1646.in", "r", stdin);
freopen ("1646.out", "w", stdout);
#endif
} const int N = 21, L = 51, Mod = 998244353; int n, len[1 << N], Pow[N * L]; char str[N][L]; int main () { File(); n = read(); Set(len, 0x3f); int tot = 0; Rep (i, n) {
scanf ("%s", str[i] + 1);
len[1 << i] = strlen(str[i] + 1);
For (j, 1, strlen(str[i] + 1))
if (str[i][j] == '?') ++ tot;
}
Pow[0] = 1;
For (i, 1, tot)
Pow[i] = 2ll * Pow[i - 1] % Mod; Rep (i, 1 << n)
chkmin(len[i], min(len[i ^ (i & -i)], len[i & -i])); int ans = 0;
Rep (i, 1 << n) if (i) {
int res = 0, sum = tot, pre = 0;
For (j, 1, len[i]) {
int flag = 0, now = 0;
Rep (k, n) if (i >> k & 1) {
if (str[k][j] == '?') ++ now;
else flag |= (str[k][j] - '0' + 1);
}
sum -= now;
if (flag == 3) break;
if (!flag) ++ pre;
res = (res + Pow[pre + sum]) % Mod;
}
ans = (ans + (__builtin_popcount(i) & 1 ? 1 : -1) * res) % Mod;
}
ans += Pow[tot]; if (ans < 0) ans += Mod;
printf ("%d\n", ans); return 0; }

hihoCoder #1646 : Rikka with String II(容斥原理)的更多相关文章

  1. HDU 5831 Rikka with Parenthesis II(六花与括号II)

    31 Rikka with Parenthesis II (六花与括号II) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  2. HDU 5831 Rikka with Parenthesis II (栈+模拟)

    Rikka with Parenthesis II 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  3. 【Hihocoder1413】Rikka with String(后缀自动机)

    [Hihocoder1413]Rikka with String(后缀自动机) 题面 Hihocoder 给定一个小写字母串,回答分别把每个位置上的字符替换为'#'后的本质不同的子串数. 题解 首先横 ...

  4. hdu 5831 Rikka with Parenthesis II 线段树

    Rikka with Parenthesis II 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  5. HDU 5831 Rikka with Parenthesis II (贪心)

    Rikka with Parenthesis II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  6. hdu 5831 Rikka with Parenthesis II 括号匹配+交换

    Rikka with Parenthesis II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. hdu.5202.Rikka with string(贪心)

    Rikka with string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  8. [LeetCode] 344 Reverse String && 541 Reverse String II

    原题地址: 344 Reverse String: https://leetcode.com/problems/reverse-string/description/ 541 Reverse Stri ...

  9. leetcode 344. Reverse String 、541. Reverse String II 、796. Rotate String

    344. Reverse String 最基础的旋转字符串 class Solution { public: void reverseString(vector<char>& s) ...

随机推荐

  1. 《梦断代码》Scott Rosenberg著(二)

    书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...

  2. Vector源码分析

    Vector与ArrayList底层实现基本类似,底层都是用数组实现的,最大的不同是Vector是线程安全的.ArrayList源码分析请参考ArrayList源码分析 一.源码分析 基于jdk1.7 ...

  3. Linux 典型应用之常用命令

    软件操作相关命令 软件包管理 (yum) 安装软件 yum install xxx(软件的名字) 如 yum install vim 卸载软件 yum remove xxx(软件的名字) 如 yum ...

  4. c#+linux+mono+Redis集群(解决无法连接Redis的问题)

    在linux环境中使用mono来执行c#的程序, 在连接redis的时候遇到了无法连接数据库的错误.如下: Unhandled Exception:StackExchange.Redis.RedisC ...

  5. 微信小程序开发的基本流程

    微信小程序开发的基本流程 一,微信小程序简介 1,微信小程序简称小程序,张小龙在微信公开课 Pro 上发布的小程序正式上线,时间是2017年1月9日. 2,微信小程序这个词可以分解为“微信”和“小程序 ...

  6. LLVM的安装

    1. 官网下载 llvm 2. 官网下载cmake 3. configure 执行 llvm 发现报错 4. 解压缩 cmake 5.将cmake 下面的bin 目录放到环境变量里面去 6. 创建一个 ...

  7. C++类的内存结构

    摘自Jerry19880126 简单类 class Base { int a; int b; public: void CommonFunction(); }; 简单类继承 class Derived ...

  8. AngularJS 中的 factory、 service 和 provider区别,简单易懂

    转自:http://blog.csdn.net/ywl570717586/article/details/51306176 初学 AngularJS 时, 肯定会对其提供 factory . serv ...

  9. SQL年月日格式化

    Select CONVERT(varchar(100), GETDATE(), 23): 2006-05-16

  10. 版本控制--git+idea