Modeling Filters and Whitening Filters
Colored and White Process
White Process
White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,white noise指的就是在PSD上具有平坦分布(常数)的随机过程。PSD是auto-correlation的傅里叶变换,PSD上为常数意味着auto-correlation是一个位于零点上的脉冲函数。
回顾auto-correlation的定义:
$R_{xx}(\tau) = E\Big\{x(t+\tau)x(t)\Big\}$
Auto-correlation在零点上为脉冲,除此之外都是0,这表明了各个采样点之间是相互独立的,正是由于各采样点之间相互独立,才体现出了white noise的white这一特点。
理想的White noise要求PSD是一个常数,不过由于传输媒介以及有限的监测能力的关系,通常我们所得到的PSD都受限于某个带宽范围之内,因此如果一个process的PSD在监测范围(或者我们所感兴趣的频率范围)表现得平坦的话,就可以称该process为white noise。比如,如果一个音频的PSD在20~20000Hz内表现平坦的话,我们就可以称该音频为white noise。
i.i.d. process就是一个最简单white noise的例子。i.i.d. process中样本的PDF常见的有Uniform、Poisson、Gaussian等分布方式,如果PDF为Gaussian,则该process称为Gaussian white noise。
Colored Process
PSD表现得平坦的就是white noise,否则就是colored process。
Modeling Filter
输入为white process,输出为colored process的LTI系统被称为Modeling filter或者shaping filter。如果我们需要某个PSD为$S_{xx}(e^{j\Omega})$的process,可以通过设计一个LTI系统,并且对该系统输入mean为0的Bernoulli process(PSD为常数1)来得到,所设计的系统需要使得输出的process的PSD为$S_{xx}(e^{j\Omega})$。根据WSS Process在LTI系统中的性质,有
$\displaystyle{ H(e^{j\Omega}) = \sqrt{S_{xx}(e^{j\Omega})} }$
我们只需要对$H(e^{j\Omega})$进行傅里叶逆变换就可以得到所需LTI系统的脉冲响应$h[n]$。

其中也可能会出现一些特殊情况,比如说所需要的process的PSD,即$S_{xx}(e^{j\Omega})$中包含脉冲,这些情况下,PSD可以表示为脉冲PSD与非脉冲PSD之和,由于傅里叶变换的线性性质,LTI系统的脉冲响应最终也可以表示为脉冲PSD的脉冲响应与非脉冲PSD的脉冲响应之和。非脉冲PSD可以按照上面的步骤求解,而脉冲PSD主要分为两种情况:
- 脉冲在零点。那么脉冲PSD的脉冲响应是一个常数,该常数的大小与脉冲PSD的大小有关。
- 脉冲在$\Omega = \pm \Omega_0\neq 0$上。那么脉冲PSD的脉冲响应是一个余弦函数$Acos(\Omega_0 n+\Theta)$,其中$A$以及$\Theta$都与脉冲PSD的大小有关。

※这一段只是计算时需要,不算理解时的重点,如想加深了解,请参考常用序列的DTFT。
Whitening Filter
输入为colored process,输出为white process的LTI系统被称为Whitening filter。如下系统框图:

输入process为$x[n]$,其PSD为$\displaystyle{S_{xx}(e^{j\Omega}) = \mathcal{F}R_{xx}[m]}$,输出为白噪声,该白噪声的variance为$\sigma_{w}^2$,mean为0。
那么根据WSS Process在LTI系统中的性质,有
$\displaystyle{S_{ww}(e^{j\Omega}) = |H(e^{j\Omega})|^2S_{xx}(e^{j\Omega})}$
进一步可以推导出(详情请查看Reference的第二条链接)
$\displaystyle{|H(e^{j\Omega})|^2 = \frac{\sigma_w^2}{S_{xx}(e^{j\Omega})}}$
Reference:
Alan V. Oppenheim: Signals, Systems and Inference, Chapter 10:Power Spectral Density
Where does the delta function come from if we derive autocorrelation directly?
Modeling Filters and Whitening Filters的更多相关文章
- [转]ASP.NET Core Exception Filters and Resource Filters
本文转自:https://damienbod.com/2015/09/30/asp-net-5-exception-filters-and-resource-filters/ This article ...
- flex 4 Filters
<s:RectangularDropShadow id="dropShadow" blurX="10" blurY="10" alph ...
- Jersey(1.19.1) - Client API, Using filters
Filtering requests and responses can provide useful functionality that is hidden from the applicatio ...
- mvc Filters 过滤器
项目需要控制controller和action的访问权限. 看了下资料,发觉还是很方便的. 首先在mvc项目下创建一个文件夹 Filters, 然后在Filters中创建一个类.代码如下 namesp ...
- ASP.NET Core 2 学习笔记(十四)Filters
Filter是延续ASP.NET MVC的产物,同样保留了五种的Filter,分别是Authorization Filter.Resource Filter.Action Filter.Excepti ...
- Filters in ASP.NET Core (转自MSDN)
Filters in ASP.NET Core MVC allow you to run code before or after specific stages in the request pro ...
- Spring Security – security none, filters none, access permitAll
1.概述 Spring Security提供了几种将请求模式配置为不安全或允许所有访问的机制.取决于这些机制中的哪一种 - 这可能意味着根本不在该路径上运行安全过滤器链,或者运行过滤器链并允许访问 2 ...
- Filters.h各种信号恢复滤波器头文件
这篇文章有部分原理:http://blog.csdn.net/u013467442/article/details/41125473 代码下载地址:http://read.pudn.com/downl ...
- Filters in ASP.NET Core
Filters in ASP.NET Core allow code to be run before or after specific stages in the request processi ...
随机推荐
- FineUIPro v4.0.0 发布了,全新 CSS3 动画惊艳登场!
FineUI(专业版)v4.0.0 即将于 2017-10-23 发布! 这个版本将引入了激动人心的 CSS3 动画,只需要开启全局属性 EnableAnimation 即可,先睹为快: 1. 菜单动 ...
- 基于ASP.NET 4.0开发的微商城系统OdnShop,开源发布
基于ASP.NET 4.0开发的开源微商城系统,我们的目标是构建一个核心完善而又轻量级的微商城平台,目前基本的核心功能,包括微信登陆/支付,产品管理,购物车与订单管理等,轻量级是为了更加便于理解源码和 ...
- 使用 IIS 在 Windows 上托管 ASP.NET Core2.0
准备: 操作系统:Windows Server 2008 R2 或更高版本 开发环境:VS2017 第一步:新建项目ASP.NET Core Web应用程序 在 Visual Studio 中,选择“ ...
- python 跨域处理方式
因为浏览器的同源策略限制,不是同源的脚本不能操作其他源下面的资源,想操作另一个源下面的资源就属于跨域了,这里说的跨域是广义跨域,我们常说的代码中请求跨域,是狭义的跨域,即在脚本代码中向非同源域发送ht ...
- Mysql权限操作、用户管理、密码操作
Mysql的权限 mysql中存在4个控制权限的表,分别为user表,db表,tables_priv表,columns_priv表. mysql权限表的验证过程为: 先从user表中的Host,Use ...
- Python-爬虫小例子-55
import re from urllib.request import urlopen def getPage(url): response = urlopen(url) return respon ...
- StanfordPOSTagger的用法
或者: 然后, 由说明文档可知,nltk.tag.stanford module是与斯坦福标识符交互的模块.要到https://nlp.stanford.edu/software下载Tagger mo ...
- java中流的简单小结
1.分类 按字节流分: InputStream(输出流) OutputStream(输入流) 按字符流分: Reader Writer 提示:输入.输出是站在程序的角度而言,所有输入流是“读 ...
- SpringMVC controller 时间 T
Spring MVC 之 处理Date类型 - carl.zhao的专栏 - CSDN博客https://blog.csdn.net/u012410733/article/details/727730 ...
- JEECG DataGridColumn dictionary使用问题
<t:dgCol title="线索所属人" field="ownerId" query="true" queryMode=&q ...