import mnist_loader
import network training_data, validation_data, test_data = mnist_loader.load_data_wrapper() print("training_data")
print(type(training_data))
print(list(training_data))
print(training_data[0][0].shape)
print(training_data[0][1].shape) net = network.Network([784, 30, 10])
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
import random  

import numpy as np

class Network(object):         

    def __init__(self, sizes):
"""The list ``sizes`` contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean 0, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers."""
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self, a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The ``training_data`` is a list of tuples
``(x, y)`` representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If ``test_data`` is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data:
n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print ("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test)) else:
print ("Epoch {0} complete".format(j)) def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in xrange(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w) def evaluate(self, test_data):#评估,
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y) def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
import pickle as cPickle
import gzip import numpy as np def load_data():
"""Return the MNIST data as a tuple containing the training data,
the validation data, and the test data. The ``training_data`` is returned as a tuple with two entries.
The first entry contains the actual training images. This is a
numpy ndarray with 50,000 entries. Each entry is, in turn, a
numpy ndarray with 784 values, representing the 28 * 28 = 784
pixels in a single MNIST image. The second entry in the ``training_data`` tuple is a numpy ndarray
containing 50,000 entries. Those entries are just the digit
values (0...9) for the corresponding images contained in the first
entry of the tuple. The ``validation_data`` and ``test_data`` are similar, except
each contains only 10,000 images. This is a nice data format, but for use in neural networks it's
helpful to modify the format of the ``training_data`` a little.
That's done in the wrapper function ``load_data_wrapper()``, see
below.
"""
f = gzip.open('../data/mnist.pkl.gz', 'rb')
training_data, validation_data, test_data = cPickle.load(f,encoding='bytes') #(f,encoding='bytes')
f.close()
return (training_data, validation_data, test_data) def load_data_wrapper():
"""Return a tuple containing ``(training_data, validation_data,
test_data)``. Based on ``load_data``, but the format is more
convenient for use in our implementation of neural networks. In particular, ``training_data`` is a list containing 50,000
2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
containing the input image. ``y`` is a 10-dimensional
numpy.ndarray representing the unit vector corresponding to the
correct digit for ``x``. ``validation_data`` and ``test_data`` are lists containing 10,000
2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
numpy.ndarry containing the input image, and ``y`` is the
corresponding classification, i.e., the digit values (integers)
corresponding to ``x``. Obviously, this means we're using slightly different formats for
the training data and the validation / test data. These formats
turn out to be the most convenient for use in our neural network
code."""
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
validation_data = zip(validation_inputs, va_d[1])
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])
return (training_data, validation_data, test_data) def vectorized_result(j):
"""Return a 10-dimensional unit vector with a 1.0 in the jth
position and zeroes elsewhere. This is used to convert a digit
(0...9) into a corresponding desired output from the neural
network."""
e = np.zeros((10, 1))
e[j] = 1.0
return e

NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu的更多相关文章

  1. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

  2. SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu

    import mnist_loader # Third-party libraries from sklearn import svm def svm_baseline(): training_dat ...

  3. 利用图片的灰度平均值来进行分类实现手写图片识别(数据集50000张图片)——Jason niu

    from collections import defaultdict import mnist_loader def main(): training_data, validation_data, ...

  4. 利用c++编写bp神经网络实现手写数字识别详解

    利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...

  5. TensorFlow 卷积神经网络手写数字识别数据集介绍

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...

  6. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  7. BP神经网络的手写数字识别

    BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种 ...

  8. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  9. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

随机推荐

  1. c#在Excel指定单元格中插入图片

    方法一: /// 将图片插入到指定的单元格位置,并设置图片的宽度和高度./// 注意:图片必须是绝对物理路径/// </summary>/// <param name="R ...

  2. day14 迭代器 生成器 面向过程思想

    "" 迭代器 什么是迭代器(iterator) 器指的某种工具, 迭代指的是更新换代的过程,例如应用程序的版本更新从1.0 变成 1.1 再1.2 迭代的目的是要根据上一个结果,产 ...

  3. bzoj2973转移矩阵构造法!

    /* 构造单位矩阵(转移矩阵) 给定n*m网格,每个格子独立按照长度不超过6的操作串循环操作 对应的操作有 0-9:拿x个石头到这个格子 nwse:把这个格子的石头推移到相邻格子 d:清空该格石子 开 ...

  4. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  5. 多线程相关-ThreadPoolExecutor

    应用层面: ThreadPoolExecutor: 创建多线程池执行器:new ThreadPoolExecutor(),创建方法最终都是走的以下这个构造方法: /** * Creates a new ...

  6. vscode c++ cmake template project

    VSCode configure C++ dev environment claim use CMake to build the project. For debugging, VSCode's C ...

  7. ubuntu下使用matplotlib绘图无法显示中文label

    原因是字体导致的.大家的做法基本都是搞一个windows上的字体文件(simhei.ttf, 点我fq下载)然后刷新一下缓存文件. 只不过百度搜到第一篇CSDN的博客,写的很不靠谱(不是所有的CSDN ...

  8. 使用docker方式安装etcd集群,带TLS证书

    网上文档也多,安装的时候,还是踩了几个坑. 现在作一个安装记录吧. 1,先作自签名的证书ca-csr.json(为了和k8s共用根证书,可能将信息调为k8s). { "CN": & ...

  9. 修改Elasticsearch的settings

    解决:Limit of total fields [1000] in index [nginx-access-log] has been exceeded" 的问题 PUT http://1 ...

  10. [转] 最详尽的 JS 原型与原型链终极详解

    四. __proto__ JS 在创建对象(不论是普通对象还是函数对象)的时候,都有一个叫做__proto__ 的内置属性,用于指向创建它的构造函数的原型对象. 对象 person1 有一个 __pr ...