区间DP模板题

区间DP模板Code:

for(int len=;len<=n;len++)
{
for(int i=;i<=*n-;i++) //区间左端点
{
int j = i + len - ; //区间右端点
for(int k=i;k<j;k++) //断点位置
{
f[i][j] = min(f[i][j],f[i][k] + f[k + ][j] + s[j] - s[i - ]);
}
}
}

题目描述

在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1: 4 4 5 9 4

输出样例#1: 43 54

这个题的数据存储特点有一点代表性:破环成列,把长度为n的环转换为长度为2n-1的列,再进行一次动归。

针对于这个题的n很小,我们就可以用它来代表区间长度,这样O(n ^ 3)也能跑过去了

区间DP的概念就是把一个区间的状态一直分割为它的子区间的状态,一直到这个子区间的状态是显然可求的,最后再将它们综合起来

举个栗子:

f[i][j]中我们可以将[i,j]这一个区间划分为[i,k]和[k + 1,j]这两个区间的总状态再进行一次操作

这个的边界就是[i,k]和[k + 1,j]是显然可求的状态

这个题要求一个最大值和最小值的问题

我们可以显而易见地发现最小值一定小于等于最大值

这样我们可以只建立一个数组先求最小再求最大,节省了两个数组的空间(虽然这不是重点qwq)

Code:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int f[][]; //节省空间
int s[];
int n,x,ans = ;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&x);
s[i] = s[i - ] + x;
s[i + n] = s[i]; //把长度开到 2n - 1
}
for(int i=;i<n;i++)
s[i + n] += s[n];
memset(f,,sizeof(f)); //初始化
for(int i=;i<=*n-;i++)
f[i][i] = ;
for(int len=;len<=n;len++)
{
for(int i=;i<=*n-;i++) //区间左端点
{
int j = i + len - ; //区间右端点
for(int k=i;k<j;k++) //断点位置
{
f[i][j] = min(f[i][j],f[i][k] + f[k + ][j] + s[j] - s[i - ]);
}
}
}
for(int i=;i<=n;i++)
ans = min(ans,f[i][i + n - ]);
printf("%d\n",ans); //最小值一定比最大值要小,所以无需更新
for(int len=;len<=n;len++)
{
for(int i=;i<=*n-;i++) //区间左端点
{
int j = i + len - ; //区间右端点
for(int k=i;k<j;k++) //断点位置
{
f[i][j] = max(f[i][j],f[i][k] + f[k + ][j] + s[j] - s[i - ]);
}
}
}
for(int i=;i<=n;i++)
ans = max(ans,f[i][i + n - ]);
printf("%d\n",ans);
return ;
}

[洛谷P1880][NOI1995]石子合并的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]

    题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...

  5. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  6. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  9. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

随机推荐

  1. Confluence 6 导入一个 Confluence 站点

    有下面 2 种类方法可以导入一个站点 - 通过上传一个文件或者从你 Confluence 服务器上读取一个目录.上传文件仅仅是针对一个小站点的情况.为了取得最好的导入结果,我们推荐你从服务器上的目录上 ...

  2. Confluence 6 使用 Jira 管理用户

    如果你已经使用了 Jira 来管理你的任务和 issue 的话,你可以选择将 Jira 和 Confluence 整合在一起,将用户管理集中到一个地方.你可以控制你 Jira 中的用户组是否具有使用 ...

  3. Spark Streaming 实现思路与模块概述

    一.基于 Spark 做 Spark Streaming 的思路 Spark Streaming 与 Spark Core 的关系可以用下面的经典部件图来表述: 在本节,我们先探讨一下基于 Spark ...

  4. PDF怎么编辑,如何旋转PDF页面方向

    很多的时候,无论是工作中,还是在学习中都会遇到PDF文件,对于PDF文件,熟悉的小伙伴知道,在编辑PDF文件的时候,是需要使用到PDF编辑软件的,那么,在编辑PDF文件的时候,需要旋转文件的页面,这时 ...

  5. ERROR 2002 (HY000): Can't connect to local MySQL server through socket '***' (2)

    有时候,当我们使用“mysql”.“mysqladmin”.“mysqldump”等命令管理数据库时,服务器抛出类似如下错误: ERROR (HY000): Can't connect to loca ...

  6. ftp的自动部署以及添加虚拟账户的脚本

    #!/bin/bash #本脚本为自动化安装vsftp,使用虚拟用户认证登录ftp上传下载文件 echo =============================================== ...

  7. go包之logrus显示日志文件与行号

    前言: logrus是go中比较好的一个log模块.github上的很多开源项目都在使用这个模块, 我在写这个博文时, github上的logrus的stars数已经有8214了.最近在用这个模块时, ...

  8. API接口加密方式说明

    标签: 接口 2016年10月11日 19:41:20 13299人阅读 评论(0) 收藏 举报  分类: API(5)  版权声明:本文为博主原创文章,未经博主允许不得转载. http://blog ...

  9. jenkins权限管理,实现不同用户组显示对应视图views中不同的jobs

    如何分组管理权限,如何实现不同用户组显示对应视图views中不同的jobs,建议使用Role Strategy Plugin插件. 1.安装Role Strategy Plugin插件. 2.“系统管 ...

  10. python 全栈开发,Day71(模型层-单表操作)

    昨日内容回顾 1. {% include '' %} 2. extend base.html: <html> ..... ..... ..... {% block content%} {% ...