Redis数据库

简介

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步

python操作Redis之普通连接

redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py

import redis

r = redis.Redis(host='127.0.0.1', port=6379)
r.set('foo', 'Bar')
print(r.get('foo'))

python操作Redis之连接池

redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池

import redis

pool = redis.ConnectionPool(host='127.0.0.1', port=6379)
r = redis.Redis(connection_pool=pool)
r.set('foo', 'Bar')
print(r.get('foo'))

  

操作之String操作

String操作,redis中的String在在内存中按照一个name对应一个value来存储。

set(name, value, ex=None, px=None, nx=False, xx=False)

在Redis中设置值,默认,不存在则创建,存在则修改
参数:
ex,过期时间(秒)
px,过期时间(毫秒)
nx,如果设置为True,则只有name不存在时,当前set操作才执行,值存在,就修改不了,执行没效果
xx,如果设置为True,则只有name存在时,当前set操作才执行,值存在才能修改,值不存在,不会设置新值

  

setnx(name, value)

设置值,只有name不存在时,执行设置操作(添加),如果存在,不会修改

setex(name, value, time)

# 设置值
# 参数:
# time,过期时间(数字秒 或 timedelta对象)

psetex(name, time_ms, value)

# 设置值
# 参数:
# time_ms,过期时间(数字毫秒 或 timedelta对象

mset(*args, **kwargs)

批量设置值
如:
mset(k1='v1', k2='v2')

mget({'k1': 'v1', 'k2': 'v2'})

get(name)

获取值

mget(keys, *args)

批量获取
如:
mget('k1', 'k2')

r.mget(['k3', 'k4'])

getset(name, value)

设置新值并获取原来的值

getrange(key, start, end)

# 获取子序列(根据字节获取,非字符)
# 参数:
# name,Redis 的 name
# start,起始位置(字节)
# end,结束位置(字节)
# 如: "刘清政" ,0-3表示 "刘"

setrange(name, offset, value)

# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
# offset,字符串的索引,字节(一个汉字三个字节)
# value,要设置的值

setbit(name, offset, value)

# 对name对应值的二进制表示的位进行操作

# 参数:
# name,redis的name
# offset,位的索引(将值变换成二进制后再进行索引)
# value,值只能是 1 或 0 # 注:如果在Redis中有一个对应: n1 = "foo",
那么字符串foo的二进制表示为:01100110 01101111 01101111
所以,如果执行 setbit('n1', 7, 1),则就会将第7位设置为1,
那么最终二进制则变成 01100111 01101111 01101111,即:"goo"

getbit(name, offset)

# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

# 获取name对应的值的二进制表示中 1 的个数
# 参数:
# key,Redis的name
# start,位起始位置
# end,位结束位置

bitop(operation, dest, *keys)

# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值

# 参数:
# operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
# dest, 新的Redis的name
# *keys,要查找的Redis的name # 如:
bitop("AND", 'new_name', 'n1', 'n2', 'n3')
# 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中

strlen(name)

# 返回name对应值的字节长度(一个汉字3个字节)

incr(self, name, amount=1)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。

# 参数:
# name,Redis的name
# amount,自增数(必须是整数) # 注:同incrby

incrbyfloat(self, name, amount=1.0)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。

# 参数:
# name,Redis的name
# amount,自增数(浮点型)

decr(self, name, amount=1)

# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。

# 参数:
# name,Redis的name
# amount,自减数(整数)

append(key, value)

# 在redis name对应的值后面追加内容

# 参数:
key, redis的name
value, 要追加的字符串

操作之Hash操作

hset(name, key, value)

# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)

# 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value # 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

hmset(name, mapping)

# 在name对应的hash中批量设置键值对

# 参数:
# name,redis的name
# mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如:
# r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hget(name,key)

# 在name对应的hash中获取多个key的值

# 参数:
# name,reids对应的name
# keys,要获取key集合,如:['k1', 'k2', 'k3']
# *args,要获取的key,如:k1,k2,k3 # 如:
# r.mget('xx', ['k1', 'k2'])
# 或
# print r.hmget('xx', 'k1', 'k2')

hgetall(name)

# 获取name对应hash的所有键值
print(re.hgetall('xxx').get(b'name'))

hlen(name)

# 获取name对应的hash中键值对的个数

hkeys(name)

# 获取name对应的hash中所有的key的值

hvals(name)

# 获取name对应的hash中所有的value的值

hexists(name, key)

# 检查name对应的hash是否存在当前传入的key

hdel(name,*keys)

# 将name对应的hash中指定key的键值对删除
print(re.hdel('xxx','sex','name'))

hincrby(name, key, amount=1)

# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)

hincrbyfloat(name, key, amount=1.0)

# 自增name对应的hash中的指定key的值,不存在则创建key=amount

# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数) # 自增name对应的hash中的指定key的值,不存在则创建key=amount

hscan(name, cursor=0, match=None, count=None)

# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆

# 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕

hscan_iter(name, match=None, count=None)

# 利用yield封装hscan创建生成器,实现分批去redis中获取数据

# 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# for item in r.hscan_iter('xx'):
# print item

操作之List操作

lpush(name,values)

# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边

# 如:
# r.lpush('oo', 11,22,33)
# 保存顺序为: 33,22,11 # 扩展:
# rpush(name, values) 表示从右向左操作

lpushx(name,value)

# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边

# 更多:
# rpushx(name, value) 表示从右向左操作

llen(name)

# name对应的list元素的个数

linsert(name, where, refvalue, value))

# 在name对应的列表的某一个值前或后插入一个新值

# 参数:
# name,redis的name
# where,BEFORE或AFTER(小写也可以)
# refvalue,标杆值,即:在它前后插入数据(如果存在多个标杆值,以找到的第一个为准)
# value,要插入的数据

r.lset(name, index, value)

# 对name对应的list中的某一个索引位置重新赋值

# 参数:
# name,redis的name
# index,list的索引位置
# value,要设置的值

r.lrem(name, value, num)

# 在name对应的list中删除指定的值

# 参数:
# name,redis的name
# value,要删除的值
# num, num=0,删除列表中所有的指定值;
# num=2,从前到后,删除2个;
# num=-2,从后向前,删除2个

lpop(name)

# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素

# 更多:
# rpop(name) 表示从右向左操作

lindex(name, index)

在name对应的列表中根据索引获取列表元素

lrange(name, start, end)

# 在name对应的列表分片获取数据
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置 print(re.lrange('aa',0,re.llen('aa')))

ltrim(name, start, end)

# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置(大于列表长度,则代表不移除任何)

rpoplpush(src, dst)

# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
# src,要取数据的列表的name
# dst,要添加数据的列表的name

blpop(keys, timeout)

# 将多个列表排列,按照从左到右去pop对应列表的元素

# 参数:
# keys,redis的name的集合
# timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞 # 更多:
# r.brpop(keys, timeout),从右向左获取数据
爬虫实现简单分布式:多个url放到列表里,往里不停放URL,程序循环取值,但是只能一台机器运行取值,可以把url放到redis中,多台机器从redis中取值,爬取数据,实现简单分布式

brpoplpush(src, dst, timeout=0)

# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧

# 参数:
# src,取出并要移除元素的列表对应的name
# dst,要插入元素的列表对应的name
# timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞

自定义增量迭代

# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
# 1、获取name对应的所有列表
# 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
import redis
conn=redis.Redis(host='127.0.0.1',port=6379)
# conn.lpush('test',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):
index=0
while True:
data_list=conn.lrange(name,index,count+index-1)
if not data_list:
return
index+=count
for item in data_list:
yield item
print(conn.lrange('test',0,100))
for item in scan_list('test',5):
print('---')
print(item)

操作之Set操作

  Set操作,Set集合就是不允许重复的列表

sadd(name,values)

# name对应的集合中添加元素

scard(name)

获取name对应的集合中元素个数

sdiff(keys, *args)

在第一个name对应的集合中且不在其他name对应的集合的元素集合

sdiffstore(dest, keys, *args)

# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

# 获取多一个name对应集合的并集

sinterstore(dest, keys, *args)

# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中

sismember(name, value)

# 检查value是否是name对应的集合的成员

smembers(name)

# 获取name对应的集合的所有成员

smove(src, dst, value)

# 将某个成员从一个集合中移动到另外一个集合

spop(name)

# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

# 从name对应的集合中随机获取 numbers 个元素

srem(name, values)

# 在name对应的集合中删除某些值

srem(name, values)

# 在name对应的集合中删除某些值

sunion(keys, *args)

# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)

# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大

有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。

zadd(name, *args, **kwargs)

# 在name对应的有序集合中添加元素
# 如:
# zadd('zz', 'n1', 1, 'n2', 2)
# 或
# zadd('zz', n1=11, n2=22)

zcard(name)

# 获取name对应的有序集合元素的数量

zcount(name, min, max)

# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

# 自增name对应的有序集合的 name 对应的分数

r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

# 按照索引范围获取name对应的有序集合的元素

# 参数:
# name,redis的name
# start,有序集合索引起始位置(非分数)
# end,有序集合索引结束位置(非分数)
# desc,排序规则,默认按照分数从小到大排序
# withscores,是否获取元素的分数,默认只获取元素的值
# score_cast_func,对分数进行数据转换的函数 # 更多:
# 从大到小排序
# zrevrange(name, start, end, withscores=False, score_cast_func=float) # 按照分数范围获取name对应的有序集合的元素
# zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
# 从大到小排序
# zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

# 获取某个值在 name对应的有序集合中的排行(从 0 开始)

# 更多:
# zrevrank(name, value),从大到小排序

zrangebylex(name, min, max, start=None, num=None)

# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大 # 参数:
# name,redis的name
# min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
# min,右区间(值)
# start,对结果进行分片处理,索引位置
# num,对结果进行分片处理,索引后面的num个元素 # 如:
# ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
# r.zrangebylex('myzset', "-", "[ca") 结果为:['aa', 'ba', 'ca'] # 更多:
# 从大到小排序
# zrevrangebylex(name, max, min, start=None, num=None)

zrem(name, values)

# 删除name对应的有序集合中值是values的成员

# 如:zrem('zz', ['s1', 's2'])

zremrangebyrank(name, min, max)

# 根据排行范围删除

zremrangebyscore(name, min, max)

# 根据分数范围删除

zremrangebylex(name, min, max)

# 根据值返回删除

zscore(name, value)

# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX

zunionstore(dest, keys, aggregate=None)

# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)

# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作

redis之事务操作--管道

redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。

import redis

pool = redis.ConnectionPool(host='10.211.55.4', port=6379)

r = redis.Redis(connection_pool=pool)

# pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True)
pipe.multi()
pipe.set('name', 'alex')
pipe.set('role', 'sb') pipe.execute()

  

Django中使用redis

方式一:

utils文件夹下,建立redis_pool.py

import redis
POOL = redis.ConnectionPool(host='127.0.0.1', port=6379,password='1234',max_connections=1000)

视图函数中使用:

import redis
from django.shortcuts import render,HttpResponse
from utils.redis_pool import POOL def index(request):
conn = redis.Redis(connection_pool=POOL)
conn.hset('kkk','age',18) return HttpResponse('设置成功')
def order(request):
conn = redis.Redis(connection_pool=POOL)
conn.hget('kkk','age') return HttpResponse('获取成功')

方式二

安装django-redis模块

pip3 install django-redis

setting里配置:

# redis配置
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}
# "PASSWORD": "123",
}
}
}

视图函数:

from django_redis import get_redis_connection
conn = get_redis_connection('default')
print(conn.hgetall('xxx'))

day91-redis的更多相关文章

  1. 使用redis构建可靠分布式锁

    关于分布式锁的概念,具体实现方式,直接参阅下面两个帖子,这里就不多介绍了. 分布式锁的多种实现方式 分布式锁总结 对于分布式锁的几种实现方式的优劣,这里再列举下 1. 数据库实现方式 优点:易理解 缺 ...

  2. Ignite性能测试以及对redis的对比

    测试方法 为了对Ignite做一个基本了解,做了一个性能测试,测试方法也比较简单主要是针对client模式,因为这种方法和使用redis的方式特别像.测试方法很简单主要是下面几点: 不作参数优化,默认 ...

  3. mac osx 安装redis扩展

    1 php -v查看php版本 2 brew search php|grep redis 搜索对应的redis   ps:如果没有brew 就根据http://brew.sh安装 3 brew ins ...

  4. Redis/HBase/Tair比较

    KV系统对比表 对比维度 Redis Redis Cluster Medis Hbase Tair 访问模式    支持Value大小 理论上不超过1GB(建议不超过1MB) 理论上可配置(默认配置1 ...

  5. Redis数据库

    Redis是k-v型数据库的典范,设计思想及数据结构实现都值得学习. 1.数据类型 value支持五种数据类型:1.字符串(strings)2.字符串列表(lists)3.字符串集合(sets)4.有 ...

  6. redis 学习笔记(2)

    redis-cluster 简介 redis-cluster是一个分布式.容错的redis实现,redis-cluster通过将各个单独的redis实例通过特定的协议连接到一起实现了分布式.集群化的目 ...

  7. redis 学习笔记(1)

    redis持久化 snapshot数据快照(rdb) 这是一种定时将redis内存中的数据写入磁盘文件的一种方案,这样保留这一时刻redis中的数据镜像,用于意外回滚.redis的snapshot的格 ...

  8. python+uwsgi导致redis无法长链接引起性能下降问题记录

    今天在部署python代码到预生产环境时,web站老是出现redis链接未初始化,无法连接到服务的提示,比对了一下开发环境与测试环境代码,完全一致,然后就是查看各种日志,排查了半天也没有查明是什么原因 ...

  9. nginx+iis+redis+Task.MainForm构建分布式架构 之 (redis存储分布式共享的session及共享session运作流程)

    本次要分享的是利用windows+nginx+iis+redis+Task.MainForm组建分布式架构,上一篇分享文章制作是在windows上使用的nginx,一般正式发布的时候是在linux来配 ...

  10. windows+nginx+iis+redis+Task.MainForm构建分布式架构 之 (nginx+iis构建服务集群)

    本次要分享的是利用windows+nginx+iis+redis+Task.MainForm组建分布式架构,由标题就能看出此内容不是一篇分享文章能说完的,所以我打算分几篇分享文章来讲解,一步一步实现分 ...

随机推荐

  1. C# 如何使用 Elasticsearch (ES)

    Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好 ...

  2. spring静态代理和动态代理

    本节要点: Java静态代理 Jdk动态代理 1 面向对象设计思想遇到的问题 在传统OOP编程里以对象为核心,并通过对象之间的协作来形成一个完整的软件功能,由于对象可以继承,因此我们可以把具有相同功能 ...

  3. [20190226]删除tab$记录的恢复6.txt

    [20190226]删除tab$记录的恢复6.txt --//春节前几天做了删除tan$记录的测试,链接:http://blog.itpub.net/267265/viewspace-2565245/ ...

  4. SSM框架—环境搭建(MyEclipse+Tomcat+MAVEN+SVN)

    1.JDK的安装 首先下载JDK,这个从sun公司官网可以下载,根据自己的系统选择64位还是32位,安装过程就是next一路到底.安装完成之后当然要配置环境变量了. 1.1新建变量名:JAVA_HOM ...

  5. android调试工具adb命令大全

    转载: 一.adb介绍SDK的Tools文件夹下包含着Android模拟器操作的重要命令adb,adb的全称为(Android Debug Bridge就是调试桥的作用.通过adb我们可以在Eclip ...

  6. June 4. 2018 Week 23rd Monday

    Don't criticize what you can't understand. 不懂的,不要随意批判. From Bob Dylan. Don't criticize what you can' ...

  7. Scrapy 框架 安装 五大核心组件 settings 配置 管道存储

    scrapy 框架的使用 博客: https://www.cnblogs.com/bobo-zhang/p/10561617.html 安装: pip install wheel 下载 Twisted ...

  8. cookie 处理 以及模拟登陆

    cookie的处理 1.手动处理: cookie封装到headers 2.自动处理: 1.获取一个session对象 2.使用session对象进行请求的发送 3.作用:在使用session进行请求发 ...

  9. 如何生成git ssh key

    公司有自己的git版本控制,自己注册账号后,管理员同意,就可以查看项目代码了,但是要克隆的话需要在本地生成git ssh key 一.进入.ssh文件夹. cd ~/.ssh 若没有.ssh文件夹,则 ...

  10. 为什么一定要学习linux系统?

    为什么一定要学习linux系统? linux诞生了这么多年,以前还喊着如何能取代windows系统,现在这个口号已经小多了,任何事物发展都有其局限性都有其天花板.就如同在国内再搞一个社交软件取代腾讯一 ...