Train/Dev/Test set

Bias/Variance

  

    

Regularization 

有下面一些regularization的方法.
  1. L2 regularation
  2. drop out
  3. data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像)

L2 regularization:

  

Forbenius Norm.

上面这张图提到了weight decay 的概念

Weight Decay: A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.

why regulation works(intuition)?

  

Dropout regularization:

下面的图只显示了forward propagation过程中使用dropout, back propagation 同样也需要drop out.

  

在对 test set 做预测的时候,不需要 drop out.

  

  

Early stopping: 缺点是违反了正交原则(Orthoganalization, 不同角度互不影响计算), 因为early stopping 同时关注Optimize cost func J, 和 Not overfit 两个任务,不是分开解决。一般建议用L2 regularization, 但是缺点是迭代次数多.

  

Normalizing input

就是把input x 转化成方差,公式如下

  

Vanishing/Exploding gradients

deep neural network suffer from these issues. they are huge barrier to training deep neural network.

There is a partial solution to solve the above problem but help a lot which is careful choice how you initialize the weights. 主要目的是使得weight W[l]不要比1太大或者太小,这样最后在算W的指数级的时候就很大程度改善vanishing 和 exploding的问题.

如果用的是Relu activation, 就用中下部的蓝框的内容(He Initialization),如果是tanh activation 就用右边的蓝框的内容(Xavier initialization),也有些人对tanh用右边第二种

Weight Initialization for Deep Networks

Xavier initialization

Gradient Checking

  

Ref:

1. Coursera

Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course的更多相关文章

  1. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

  2. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  3. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  4. 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记

    Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...

  5. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  8. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  9. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

随机推荐

  1. QML学习笔记(七)— 实现可拖拽、编辑、选中的ListView

    鼠标单击可选中当前项,头部呈绿色显示:按压当前项可进行拖拽更换列表项位置:点击数据可以进行编辑: GitHub:八至 作者:狐狸家的鱼 这里是自己定义的model,有些字体和颜色都是使用的全局属性, ...

  2. A1117. Eddington Number

    British astronomer Eddington liked to ride a bike. It is said that in order to show off his skill, h ...

  3. bzoj2553 禁忌

    题目链接 题意 给出一个\(n\)个字符串的字典.对于一个字符串,他的贡献是这个字符串中最多的在字典中出现的不重叠子串的数量. 然后问一个长度为\(len\)的,字符集为前\(alphabet\)个字 ...

  4. django 配置media 存放调用 图片、图标等文件

    一.需求分析: 一般在网站开发中,有很多类似于用户头像.用户上传的文件,这些经常要改变的媒体文件,需要有一个地方存放,于是就需要media目录,起到跟static类似的功能. 二.在settings. ...

  5. linux系统调用之进程控制

    1 进程控制: fork                                                                                     创建一 ...

  6. TestNg 2.套件测试

    看一下我的目录结构,新建一个包,名字叫做suite,主要为了做套件的测试用.然后在resource下新建一个文件,一般的叫做testng.xml,我这里随便起个名字,叫做suite.xml. 运行的时 ...

  7. jQuery实现表格行的动态增加与删除(改进版)

    之前写过一个简单的利用jQuery实现表格行的动态增加与删除的例子,有些人评论说"如果表格中是input元素,那么删除后的东西都将自动替换,这样应该是有问题的,建议楼主改进!",故 ...

  8. 随机数Random

    掷骰子10次,统计1.2出现的次数 public static void Main(string[] args) { ,a2=; Random random=new Random();//创建随机数对 ...

  9. (map string)Crazy Search hdu1381

    Crazy Search Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  10. SVN提交前准备

    操作步骤1: 操作步骤2: 操作步骤3: 操作步骤4: 操作步骤5: 操作步骤6:查看 操作步骤7:ignore 操作步骤8:直接提交项目