Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course
Train/Dev/Test set
Bias/Variance
Regularization
- L2 regularation
- drop out
- data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像)
L2 regularization:
Forbenius Norm.
上面这张图提到了weight decay 的概念
Weight Decay: A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
why regulation works(intuition)?
Dropout regularization:
下面的图只显示了forward propagation过程中使用dropout, back propagation 同样也需要drop out.
在对 test set 做预测的时候,不需要 drop out.
Early stopping: 缺点是违反了正交原则(Orthoganalization, 不同角度互不影响计算), 因为early stopping 同时关注Optimize cost func J, 和 Not overfit 两个任务,不是分开解决。一般建议用L2 regularization, 但是缺点是迭代次数多.
Normalizing input
就是把input x 转化成方差,公式如下
Vanishing/Exploding gradients
deep neural network suffer from these issues. they are huge barrier to training deep neural network.
There is a partial solution to solve the above problem but help a lot which is careful choice how you initialize the weights. 主要目的是使得weight W[l]不要比1太大或者太小,这样最后在算W的指数级的时候就很大程度改善vanishing 和 exploding的问题.
如果用的是Relu activation, 就用中下部的蓝框的内容(He Initialization),如果是tanh activation 就用右边的蓝框的内容(Xavier initialization),也有些人对tanh用右边第二种
Weight Initialization for Deep Networks
Xavier initialization
Gradient Checking
Ref:
1. Coursera
Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course的更多相关文章
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking
Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
随机推荐
- QML学习笔记(七)— 实现可拖拽、编辑、选中的ListView
鼠标单击可选中当前项,头部呈绿色显示:按压当前项可进行拖拽更换列表项位置:点击数据可以进行编辑: GitHub:八至 作者:狐狸家的鱼 这里是自己定义的model,有些字体和颜色都是使用的全局属性, ...
- A1117. Eddington Number
British astronomer Eddington liked to ride a bike. It is said that in order to show off his skill, h ...
- bzoj2553 禁忌
题目链接 题意 给出一个\(n\)个字符串的字典.对于一个字符串,他的贡献是这个字符串中最多的在字典中出现的不重叠子串的数量. 然后问一个长度为\(len\)的,字符集为前\(alphabet\)个字 ...
- django 配置media 存放调用 图片、图标等文件
一.需求分析: 一般在网站开发中,有很多类似于用户头像.用户上传的文件,这些经常要改变的媒体文件,需要有一个地方存放,于是就需要media目录,起到跟static类似的功能. 二.在settings. ...
- linux系统调用之进程控制
1 进程控制: fork 创建一 ...
- TestNg 2.套件测试
看一下我的目录结构,新建一个包,名字叫做suite,主要为了做套件的测试用.然后在resource下新建一个文件,一般的叫做testng.xml,我这里随便起个名字,叫做suite.xml. 运行的时 ...
- jQuery实现表格行的动态增加与删除(改进版)
之前写过一个简单的利用jQuery实现表格行的动态增加与删除的例子,有些人评论说"如果表格中是input元素,那么删除后的东西都将自动替换,这样应该是有问题的,建议楼主改进!",故 ...
- 随机数Random
掷骰子10次,统计1.2出现的次数 public static void Main(string[] args) { ,a2=; Random random=new Random();//创建随机数对 ...
- (map string)Crazy Search hdu1381
Crazy Search Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- SVN提交前准备
操作步骤1: 操作步骤2: 操作步骤3: 操作步骤4: 操作步骤5: 操作步骤6:查看 操作步骤7:ignore 操作步骤8:直接提交项目