Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course
Train/Dev/Test set

Bias/Variance

Regularization
- L2 regularation
- drop out
- data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像)
L2 regularization:

Forbenius Norm.
上面这张图提到了weight decay 的概念
Weight Decay: A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
why regulation works(intuition)?

Dropout regularization:
下面的图只显示了forward propagation过程中使用dropout, back propagation 同样也需要drop out.

在对 test set 做预测的时候,不需要 drop out.


Early stopping: 缺点是违反了正交原则(Orthoganalization, 不同角度互不影响计算), 因为early stopping 同时关注Optimize cost func J, 和 Not overfit 两个任务,不是分开解决。一般建议用L2 regularization, 但是缺点是迭代次数多.

Normalizing input
就是把input x 转化成方差,公式如下



Vanishing/Exploding gradients
deep neural network suffer from these issues. they are huge barrier to training deep neural network.

There is a partial solution to solve the above problem but help a lot which is careful choice how you initialize the weights. 主要目的是使得weight W[l]不要比1太大或者太小,这样最后在算W的指数级的时候就很大程度改善vanishing 和 exploding的问题.
如果用的是Relu activation, 就用中下部的蓝框的内容(He Initialization),如果是tanh activation 就用右边的蓝框的内容(Xavier initialization),也有些人对tanh用右边第二种
Weight Initialization for Deep Networks

Xavier initialization
Gradient Checking




Ref:
1. Coursera
Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course的更多相关文章
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking
Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
随机推荐
- Spring boot学习笔记之@SpringBootApplication注解
@SpringBootApplication(exclude = SessionAutoConfiguration.class) public class BootReactApplication { ...
- Vue+Django2.0 restframework打造前后端分离的生鲜电商项目(3)
1.drf前期准备 1.django-rest-framework官方文档 https://www.django-rest-framework.org/ #直接百度找到的djangorestframe ...
- python--数据类型bytes
在Python3以后,字符串和bytes类型彻底分开了.字符串是以字符为单位进行处理的,bytes类型是以字节为单位处理的. bytes数据类型在所有的操作和使用甚至内置方法上和字符串数据类型基本一样 ...
- 第三十三节,目标检测之选择性搜索-Selective Search
在基于深度学习的目标检测算法的综述 那一节中我们提到基于区域提名的目标检测中广泛使用的选择性搜索算法.并且该算法后来被应用到了R-CNN,SPP-Net,Fast R-CNN中.因此我认为还是有研究的 ...
- selenium-网站demo学习-test Design-优化自动化代码
看selenium的网站的文档,里面的自动化用例设计有一些小点很靠谱.学了很多,可以用作优化自己的代码. 1.测试类型: Testing Static Content Testing Links Fu ...
- java抽象类和抽象方法
首先应该明确一点的是,抽象方法必须定义在抽象类中. 先看一个抽象类的定义: public abstract class Animal { public abstract void eat(); pub ...
- python自动化开发-[第十天]-线程、协程、socketserver
今日概要 1.线程 2.协程 3.socketserver 4.基于udp的socket(见第八节) 一.线程 1.threading模块 第一种方法:实例化 import threading imp ...
- 给笔记本更换SSD硬盘
给笔记本更换SSD硬盘... ---------- 给笔记本更换SSD硬盘 带活动字样的一个新的系统盘,一个之前的主分区的系统盘 ----------------------------
- 运维监控-基于yum的方式部署Zabbix Server 4.0 版本
运维监控-基于yum的方式部署Zabbix Server 4.0 版本 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.如何选择zabbix版本 1>.打开zabbix官方 ...
- 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树
105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...
