题意:

析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式。

其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x2 + x3 +... xm = k,有多少非零解,隔板法很容易得到答案 C(k+m-1, m-1),但是有限制怎么办,使用容斥,考虑有一个变量超过 n-1,两个变量超过 n-1,等等,根据集合论,很容易知道偶加,奇减。。。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define be begin()
#define ed end()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
// #define all 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 200000 + 10;
const int maxm = 1e6 + 10;
const LL mod = 998244353LL;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
inline int readInt(){ int x; scanf("%d", &x); return x; } LL fact[maxn], inv[maxn]; LL fast_pow(LL a, int n){
LL res = 1;
while(n){
if(n&1) res = res * a % mod;
n >>= 1;
a = a * a % mod;
}
return res;
} void init(){
fact[0] = fact[1] = 1;
for(int i = 2; i < maxn; ++i) fact[i] = fact[i-1] * i % mod;
inv[maxn-1] = fast_pow(fact[maxn-1], mod - 2);
for(int i = maxn-2; i >= 0; --i) inv[i] = inv[i+1] * (i+1) % mod;
} inline LL C(int n, int m){
if(n < m) return 0LL;
return fact[n] * inv[m] % mod * inv[n-m] % mod;
} inline LL G(int x, int k){
return C(m, x) * C(k - x * n + m - 1, m - 1) % mod;
} int main(){
init();
int T, k; cin >> T;
while(T--){
scanf("%d %d %d", &n, &m, &k);
if(n > k){ printf("%I64d\n", C(m+k-1, m-1)); continue; }
LL ans = 0;
for(int i = 0; i <= (k + m - 1) / n; ++i)
ans = (ans + (i&1? -G(i, k) : G(i, k))) % mod;
printf("%I64d\n", (ans%mod+mod)%mod);
}
return 0;
}

  

HDU 6397 Character Encoding (组合数学 + 容斥)的更多相关文章

  1. 多校 HDU 6397 Character Encoding (容斥)

    题意:在0~n-1个数里选m个数和为k,数字可以重复选: 如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板 ...

  2. hdu 6397 Character Encoding (生成函数)

    Problem Description In computer science, a character is a letter, a digit, a punctuation mark or som ...

  3. HDU - 6397 Character Encoding 2018 Multi-University Training Contest 8 (容斥原理)

    题意:问有多少种不重复的m个数,值在[0,n-1]范围内且和为k. 分析:当k<=n-1时,肯定不会有盒子超过n,结果是C(m+k-1,k):当k>m*(n-1)时,结果是0. 剩下的情况 ...

  4. HDU 6397 组合数学+容斥 母函数

    Character Encoding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

  5. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  6. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  7. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  8. hdu 4336 Card Collector —— Min-Max 容斥

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...

  9. [CSP-S模拟测试]:多维网格(组合数学+容斥)

    题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$.     接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数 ...

随机推荐

  1. java调用webservice方法

    由于项目的历史原因,webservice服务端是乙方公司开发的,我们自己开发的系统需要去调用乙方公司的webservice接口.前面用了网上提供的一种方法(非生成代理类),怎么也调用不成功(也许是因为 ...

  2. 在类文件中创建 写入Json文件

    由于业务需要 今天写了一个方法能够定时更新Json文件 即定时从数据库中查询数据 然后转化为Json对象 如果有数据的话 删掉之前的Json文件 重新创建一个文件 然后写入Json对象 中间走了很多弯 ...

  3. vue+el-menu设置了router之后如何跳转到外部链接

    <el-menu class="sidebar-el-menu" :default-active="onRoutes" :collapse="c ...

  4. 关于微博api中发布话题的api问题

    https://api.weibo.com/2/statuses/update.json 发布过程中出现的问题 必须在连接加上发布的,access_token,status 例如 https://ap ...

  5. 使用Vue-Router路由

    Vue Router 是 Vue.js 官方的路由管理器.它和 Vue.js 的核心深度集成,让构建单页面应用变得易如反掌.包含的功能有: 嵌套的路由/视图表 模块化的.基于组件的路由配置 路由参数. ...

  6. kettle使用笔记1--基本安装和使用

    参考来源 https://blog.csdn.net/qq_36698956/article/details/80751655,在这个文章基础上实际使用增加的. 一,安装,采用的是下载官方网站的win ...

  7. pycharm连接mysql数据库插入中文数据时出现1366编码错误

    创建数据库的时候应该这样创建: create database xxxxxxx DEFAULT CHARSET utf8 COLLATE utf8_general_ci:

  8. Linux - Ubuntu 图形界面入门

    Ubuntu 图形界面入门 目标 熟悉 Ubuntu 图形界面的基本使用 01. Ubuntu 的任务栏 02. 窗口操作按钮 03. 窗口菜单条 ——本文源自<黑马程序员>

  9. DIV+CSS详解

    DIV+CSS详解 ✪DIV+CSS"这种叫法其实是一种不准确的叫法 在做笔记的最前面必须先给大家纠正一个错误,就是"DIV+CSS"这种叫法其实是一种不准确的叫法,是国 ...

  10. 51单片机学习笔记(郭天祥版)(9)——IIC、EEPROM

    IIC是两根线,单总线,只有一根数据线,发送数据和读取收据都是一根线,像我们之前学的AD.DA都是许多线,许多线的话,这样做系统可以少浪费资源,少浪费控制IO口的资源,这种并行的处理速度快.所以线越多 ...