================
Cycling Roads
================
 

Description

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?

Input

The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.

Output

Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

Sample Input

input output
4 2
0 0
1 0
1 1
0 1
1 3
4 2
YES
4 3
0 0
1 0
1 1
0 1
1 2
2 1
3 4
NO
3 2
0 0
1 0
1 1
1 3
3 2
YES

这道题主要是判相交,只要相交就把它压入并查集,一开始我是用了cnt去记录已经相交的节点,后来发现不行,因为新加如的一条线如果加进去了,它的另外一个端点也会加入,导致cnt记录的数值不准。于是用了另外一个数组c[i]去记录以i为根的所有子节点的个数。

在判断相交这里,一开始没有注意到新加入一条线段时,应该判断所有点是否在该线段上,如果端点在该线段上,则把它加入,加了OnSegment()判断之后就AC了。

#include<cstdio>
#include<cmath>
#include<iostream>
using namespace std;
#define maxn 205
struct point
{
double x,y;
point(double x = ,double y = ):x(x),y(y){}
}p[maxn]; struct Line
{
point a,b;
int pos1,pos2;
Line(){}
Line(point x,point y,int ppos1,int ppos2){ a = x; b = y; pos1 = ppos1; pos2 = ppos2;}
}line[maxn]; int n,m,cnt;
int par[maxn];
int c[maxn]; typedef point Vector;
Vector operator +(Vector A,Vector B){ return Vector(A.x+B.x, A.y+B.y); }
Vector operator -(Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator *(Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator /(Vector A,double p){ return Vector(A.x/p,A.y/p); }
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x) < eps) return ;
else return x < ? -:;
}
bool operator == (const point &a,const point &b)
{
return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ;
}
double dot(Vector A,Vector B){ return A.x*B.x + A.y*B.y; }
double cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; } bool OnSegment(point p,Line l)
{
return dcmp(cross(l.a-p,l.b-p)) == && dcmp(dot(l.a-p,l.b-p)) < ;
}
bool SegmentProperIntersection(Line l1,Line l2)
{
point a1 = l1.a;
point a2 = l1.b;
point b1 = l2.a;
point b2 = l2.b;
double c1 = cross(a2-a1,b1-a1);
double c2 = cross(a2-a1,b2-a1);
double c3 = cross(b2-b1,a1-b1);
double c4 = cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < && dcmp(c3)*dcmp(c4) < ;
} void init()
{
for(int i = ; i <= n; i++)
c[i] = ;
for(int i = ; i < maxn;i++)
par[i] = i;
}
int Find(int x)
{
if(par[x] != x)
{
return par[x]=Find(par[x]);
}
else return x;
} void Merge(int a,int b)
{
int t1 = Find(a);
int t2 = Find(b);
if(t1 != t2)
{
par[t2] = t1;
c[t1] += c[t2];
//printf("%d %d merge\n",a,b);
//return 1;
}
//return 0;
} void input()
{
int x,y; for(int i = ; i <= n; i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
p[i] = point(x,y);
}
for(int i = ; i < m; i++)
{
scanf("%d%d",&x,&y);
line[i] = Line(p[x],p[y],x,y);
for(int j = ; j <= n; j++)
{
if(OnSegment(p[j],line[i])) Merge(j,x);
}
Merge(x,y);
}
} void deal()
{
for(int i = ; i < m; i++)
{
for(int j = i + ; j < m; j++)
{
if(SegmentProperIntersection(line[i],line[j]))
{
Merge(line[j].pos1,line[i].pos1);
//Merge(line[j].pos2,line[i].pos1);
}
}
} } int main()
{
//freopen("input.txt","r",stdin);
while(scanf("%d%d",&n,&m) == )
{
init();
input();
deal();
if(c[Find()] == n) printf("YES\n");
else printf("NO\n");
} return ;
}

Ural 1966 Cycling Roads的更多相关文章

  1. URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集

    F - Cycling Roads     Description When Vova was in Shenzhen, he rented a bike and spent most of the ...

  2. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

  3. URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...

  4. Cycling

    Cycling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  5. Ural 1004 Sightseeing Trip

    Sightseeing Trip Time Limit: 2000ms Memory Limit: 16384KB This problem will be judged on Ural. Origi ...

  6. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  7. Jungle Roads[HDU1301]

    Jungle Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  8. POJ1947 Rebuilding Roads[树形背包]

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11495   Accepted: 5276 ...

  9. Constructing Roads——F

    F. Constructing Roads There are N villages, which are numbered from 1 to N, and you should build som ...

随机推荐

  1. sqlserver2017 SSAS配置远程访问不成功的问题

    sqlserver2017 SSAS通过IIS配置远程访问一直访问不成功的解决办法: 出现这个问题的原因从微软给出的更新包中说的就是: 从 SQL Server 2017 开始,Analysis Se ...

  2. HTTPClient to use http/https protocol to send request

    使用了spring boot, gradle, commons-httpcomponent3. 目前httpclient 已经有了版本4. https://github.com/lvfe/httpCl ...

  3. js对象属性 通过点(.) 和 方括号([]) 的不同之处

    //    js对象属性 通过点(.) 和 方括号([]) 的不同之处 //    1.点操作符: 静态的.右侧必须是一个以属性名称命名的简单标识符.属性名用一个标识符来表示.标识符必须直接出现再js ...

  4. hbase——b树,b+树,lsm树

    b树 b树,又叫做平衡多路查找树.一个m阶的b树的特性如下: 树中的每个节点,最多有m个子节点. 除了根节点之外,其他的每个节点至少有ceil(m/2)个子节点,ceil函数为取上限函数. 所有的叶子 ...

  5. QTcpSocket 相关知识总结

    1.  连接服务器 m_tcpSocket->connectToHost("127.0.0.1", 9877); connected = m_tcpSocket->wa ...

  6. redis设计原则

    基本原则 只应将热数据放到缓存中 所有缓存信息都应设置过期时间 缓存过期时间应当分散以避免集中过期 缓存key应具备可读性 应避免不同业务出现同名缓存key --->解决方法:  保证键名不冲突 ...

  7. PM学习梳理--业务流程和流程图介绍

  8. mysql几种关联的区别

    1.平时都是用的逗号的模式:select * from a,b where a.id=b.id,逗号的模式等于inner join和join: 2.left join 和 right join相反,效 ...

  9. SVG制作可爱小页面

    很久都没有在博客园上发表一些自己学的新东西了,只是在有空的时候逛一逛博客园而已,看来我不是一个真正的程序员,哈哈! 但是今天非常想和大家分享一个小东西,那是前两天在一个网页上看到了这个东西 我好奇中间 ...

  10. 实战操作——通过wireshark查看任意qq好友IP

    今天有群里好友问我如何查看别人IP,查IP这个东西对于一些刚入门的小白来说可能是一个比较高大上的玩意,但是实际上只需一个网络协议分析工具就OK,废话不多说,下面开始实践 实验对象:任意QQ好友 操作工 ...