================
Cycling Roads
================
 

Description

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?

Input

The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.

Output

Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

Sample Input

input output
4 2
0 0
1 0
1 1
0 1
1 3
4 2
YES
4 3
0 0
1 0
1 1
0 1
1 2
2 1
3 4
NO
3 2
0 0
1 0
1 1
1 3
3 2
YES

这道题主要是判相交,只要相交就把它压入并查集,一开始我是用了cnt去记录已经相交的节点,后来发现不行,因为新加如的一条线如果加进去了,它的另外一个端点也会加入,导致cnt记录的数值不准。于是用了另外一个数组c[i]去记录以i为根的所有子节点的个数。

在判断相交这里,一开始没有注意到新加入一条线段时,应该判断所有点是否在该线段上,如果端点在该线段上,则把它加入,加了OnSegment()判断之后就AC了。

#include<cstdio>
#include<cmath>
#include<iostream>
using namespace std;
#define maxn 205
struct point
{
double x,y;
point(double x = ,double y = ):x(x),y(y){}
}p[maxn]; struct Line
{
point a,b;
int pos1,pos2;
Line(){}
Line(point x,point y,int ppos1,int ppos2){ a = x; b = y; pos1 = ppos1; pos2 = ppos2;}
}line[maxn]; int n,m,cnt;
int par[maxn];
int c[maxn]; typedef point Vector;
Vector operator +(Vector A,Vector B){ return Vector(A.x+B.x, A.y+B.y); }
Vector operator -(Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator *(Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator /(Vector A,double p){ return Vector(A.x/p,A.y/p); }
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x) < eps) return ;
else return x < ? -:;
}
bool operator == (const point &a,const point &b)
{
return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ;
}
double dot(Vector A,Vector B){ return A.x*B.x + A.y*B.y; }
double cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; } bool OnSegment(point p,Line l)
{
return dcmp(cross(l.a-p,l.b-p)) == && dcmp(dot(l.a-p,l.b-p)) < ;
}
bool SegmentProperIntersection(Line l1,Line l2)
{
point a1 = l1.a;
point a2 = l1.b;
point b1 = l2.a;
point b2 = l2.b;
double c1 = cross(a2-a1,b1-a1);
double c2 = cross(a2-a1,b2-a1);
double c3 = cross(b2-b1,a1-b1);
double c4 = cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < && dcmp(c3)*dcmp(c4) < ;
} void init()
{
for(int i = ; i <= n; i++)
c[i] = ;
for(int i = ; i < maxn;i++)
par[i] = i;
}
int Find(int x)
{
if(par[x] != x)
{
return par[x]=Find(par[x]);
}
else return x;
} void Merge(int a,int b)
{
int t1 = Find(a);
int t2 = Find(b);
if(t1 != t2)
{
par[t2] = t1;
c[t1] += c[t2];
//printf("%d %d merge\n",a,b);
//return 1;
}
//return 0;
} void input()
{
int x,y; for(int i = ; i <= n; i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
p[i] = point(x,y);
}
for(int i = ; i < m; i++)
{
scanf("%d%d",&x,&y);
line[i] = Line(p[x],p[y],x,y);
for(int j = ; j <= n; j++)
{
if(OnSegment(p[j],line[i])) Merge(j,x);
}
Merge(x,y);
}
} void deal()
{
for(int i = ; i < m; i++)
{
for(int j = i + ; j < m; j++)
{
if(SegmentProperIntersection(line[i],line[j]))
{
Merge(line[j].pos1,line[i].pos1);
//Merge(line[j].pos2,line[i].pos1);
}
}
} } int main()
{
//freopen("input.txt","r",stdin);
while(scanf("%d%d",&n,&m) == )
{
init();
input();
deal();
if(c[Find()] == n) printf("YES\n");
else printf("NO\n");
} return ;
}

Ural 1966 Cycling Roads的更多相关文章

  1. URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集

    F - Cycling Roads     Description When Vova was in Shenzhen, he rented a bike and spent most of the ...

  2. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

  3. URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...

  4. Cycling

    Cycling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  5. Ural 1004 Sightseeing Trip

    Sightseeing Trip Time Limit: 2000ms Memory Limit: 16384KB This problem will be judged on Ural. Origi ...

  6. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  7. Jungle Roads[HDU1301]

    Jungle Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  8. POJ1947 Rebuilding Roads[树形背包]

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11495   Accepted: 5276 ...

  9. Constructing Roads——F

    F. Constructing Roads There are N villages, which are numbered from 1 to N, and you should build som ...

随机推荐

  1. 网络通信实验(2)TCP/IP LWIP 简介

    TCP/IP 简介 TCP/IP 中文名为传输控制协议/因特网互联协议,又名网络通讯协议,是 Internet 最基本的协议. Internet 国际互联网络的基础,由网络层的 IP 协议和传输层的 ...

  2. Python学习笔记6函数和代码复用

    1.函数 (1)定义: (2)函数调用 (3)函数的参数传递 参数传递的两种方式:函数调用时,参数可以按照位置或名称的方式传递 (4)函数的返回值 (5)局部变量和全局变量 (6)lambda函数 2 ...

  3. Servlet+JSP例子

    前面两节已经学习了什么是Servlet,Servlet接口函数是哪些.怎么运行.Servlet生命周期是什么?  以及Servlet中的模式匹配URL,web.xml配置和HttpServlet.怎么 ...

  4. C# 两个datatable中的数据快速比较返回交集或差集[z]

    最基本的写法无非是写多层foreach循环,数据量多了,循环的次数是乘积增长的. 这里推荐使用Except()差集.Intersect()交集,具体性能没有进行对比. 如果两个datatable的字段 ...

  5. 关于Android UI 优化

    之前项目为了同时兼容tv和手机端的UI,使用了百分比布局来动态计算控件的宽高,这种适配方案只关心屏幕的宽高(分辨率),与屏幕的像素密度无关. 在新的项目里也使用了这种方案.但是由于项目的运行硬件计算能 ...

  6. Module 的语法

    模块功能主要由两个命令构成:export和import.export命令用于规定模块的对外接口,import命令用于输入其他模块提供的功能. 一个模块就是一个独立的文件.该文件内部的所有变量,外部无法 ...

  7. vue中v-model 与 v-bind:value

    之前一直认为,v-model相当于下方代码的语法糖,如下: <h1>{{inputValue}}</h1> <input type="text" :v ...

  8. python、java读数据

    python从txt文档中读数据有个特别神奇的函数 可以把txt文档中的数据直接读取成python数组 java用Scanner类读数据比较方便

  9. nodejs之使用express框架连接mysql数据库,返回jsonapi数据

    var express = require('express');var router = express.Router();var url = require('url');var mysql = ...

  10. python的语法小结

    break 与continue的区别: 1.break是直接中断全部循环 2.continue则是在只不执行此次所循环的东西,其它循环依旧执行,比方说只是跳过第4次循环,第5次循环照常进行. \n 表 ...