思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了

#include<bits/stdc++.h>
using namespace std;
const int maxn=10005;
int dp[maxn][maxn],dp1[maxn][maxn];
const int INF=10000000;
int a[maxn];
int sum[maxn];
int dist(int x,int y){
// cout<<sum[y]-sum[x-1]<<" ";
return sum[y]-sum[x-1]; } int main(){
int n;
cin>>n;
sum[0]=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);//拆环
a[i+n]=a[i]; }
for(int i=1;i<=2*n;i++){
sum[i]=sum[i-1]+a[i];
} for(int len=2;len<=n;len++){
for(int i=1;i<=n*2;i++){
int j=i+len-1;
if(j>2*n)break;
dp1[i][j]=INF;
for(int k=i;k<j;k++){
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+dist(i,j)); //区间dp
dp1[i][j]=min(dp1[i][j],dp1[i][k]+dp1[k+1][j]+dist(i,j));
}
}
}
int ans1=0,ans2=1000000;
for(int i=1;i<=n;i++){
ans1=max(dp[i][i+n-1],ans1);
ans2=min(ans2,dp1[i][i+n-1]);
// cout<<dp1[i][i+n-1]<<" ";
}
cout<<ans2<<endl<<ans1<<endl; return 0;
}

  

P1880 [NOI1995]石子合并 区间dp+拆环成链的更多相关文章

  1. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  2. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  3. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  4. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  5. P1880 [NOI1995]石子合并[环形DP]

    题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将 ...

  6. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

  9. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

随机推荐

  1. Go源码编译安装

    参考文档1:https://www.cnblogs.com/majianguo/p/7258975.html 参考文档2:http://www.loongson.cn/news/company/456 ...

  2. React Native之TextInput的介绍与使用(富文本封装与使用实例,常用输入框封装与使用实例)

    React Native之TextInput的介绍与使用(富文本封装与使用实例,常用输入框封装与使用实例) TextInput组件介绍 TextInput是一个允许用户在应用中通过键盘输入文本的基本组 ...

  3. Azure系列2.1.2 —— BlobContainerProperties

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  4. 【转帖】介绍 .NET Standard

    [译]介绍 .NET Standard https://zhuanlan.zhihu.com/p/24267356 跟开发争执过 自己不会写代码 的确不好. 若有任何对翻译的建议,烦请指正 有任何问题 ...

  5. mybatis事务管理机制详解

    1.mybatis事务的配置和使用 mybatis事务有两种使用方式: (a):使用JDBC的事务管理机制:即使用java.Sql.Connection对象完成对事务的提交,回滚和关闭操作. (b): ...

  6. Linux基础学习笔记4-文本处理

    本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...

  7. python爬虫之pandas

    一.简介: Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模 ...

  8. 在linux命令下访问url

    1.elinks - lynx-like替代角色模式WWW的浏览器 例如: elinks --dump http://www.baidu.com 2.wget 这个会将访问的首页下载到本地 [root ...

  9. Django模板渲染

    一 . 语法 # 关于模板渲染只需要记住两种语法就可以: 1.{{ }} # 里面写变量 2.{% %} # 里面写与逻辑相关的,比如for循环 二 . 变量名 在django的模板语言中按照语法: ...

  10. Canvas & SVG

    Canvas & SVG https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-dev ...