原题链接 https://www.luogu.org/problemnew/show/P1403

这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断......恩~~......貌似很简单,看一下n的范围:100%N<=1000000......额,看来要炸

那么怎么办呢?这时候我们就要用玄学啦当然要耐心枚举几个数找找规律啦!

从洛谷题解里看到一位大佬的约数表,再看他详细的解释,终于明白了这个题的玄学所在,放约数图!!!

我们通过这个表可以发现: 在1--n这n个数中有n/1个数是1的倍数,有n/2个数是2的倍数,有n/3个数是3的倍数........有n个数是n的倍数(c++中‘/’会省略小数取整型)

所以问题的解就是n/1+n/2+n/3+.......+n/n

代码如下:

#include<iostream>
#include<cstdio>
#include<math.h>
using namespace std;
int n,sum=;
int main()
{
int n,sum=;
cin>>n;
for(int i=;i<=n;i++)
sum+=n/i;
cout<<sum;
return ;
}

P1403 [AHOI2005]约数研究的更多相关文章

  1. 洛谷——P1403 [AHOI2005]约数研究

    P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...

  2. 洛谷P1403 [AHOI2005] 约数研究 [数论分块]

    题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...

  3. P1403 [AHOI2005]约数研究 题解

    转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...

  4. 洛谷 P1403 [AHOI2005]约数研究

    怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...

  5. BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块

    第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...

  6. 题解 P1403 【[AHOI2005]约数研究】

    题目 看到题解区很多人直接给出结论:答案为 \(\displaystyle \sum_{i=1}^n\lfloor{n\over i}\rfloor\) ,没给出证明,这里给出证明 [分析] 首先,我 ...

  7. [AHOI2005]约数研究

    题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samu ...

  8. 【洛谷P1403】约数研究

    题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...

  9. BZOJ1968 [Ahoi2005] 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

随机推荐

  1. [C#]实现任何数据库类型的DbHelper帮助类

    本文章为原创内容,如需转载,请注明作者及出处,谢谢! 一.在System.Data.Common命名空间下,存在这样的一个类: // // 摘要: // 表示一组方法,这些方法用于创建提供程序对数据源 ...

  2. Minesweeper

    你玩过扫雷吗?这个可爱的小游戏带有一个我们记不住名字的操作系统.游戏的目标是找到所有地雷在M x N场中的位置.游戏在一个正方形中显示一个数字,它告诉你在这个正方形附近有 多少个地雷.每个方块最多有八 ...

  3. C. Edgy Trees

    链接 [https://codeforces.com/contest/1139/problem/C] 题意 给你n个点,n-1个边,无向的.有red和black的. k表示经过这k个点.可以跨其他点 ...

  4. 结对项目——图形界面实现与dll动态链接

    先来一发软件截图~~~ 生成题目的界面 测评界面 第三块本来准备做一个文件历史记录的界面,但是由于时间不够,暂时还没做完. 图形界面的设计与实现 由于对传统的对话框风格不太满意,所以这次作业的图形界面 ...

  5. Python IO模型

    这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ...

  6. 了解sso原理

  7. Python之参数类型、变量

    一.参数类型 (一)形参与实参 要使用局部变量时,只能通过return的方式返回 def my(name): #函数体 return name my('lrx') #name是形参,lrx是实参 不写 ...

  8. [转帖]Linux下fork函数及pthread函数的总结

    Linux下fork函数及pthread函数的总结 https://blog.csdn.net/wangdd_199326/article/details/76180514 fork Linux多进程 ...

  9. bootstrap modal垂直居中(简单封装)

    1.使用modal 弹出事件方法: 未封装前: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  10. WIndows下使用Grafana+InfluxDB打造监控系统

     前言 对于一个运维DBA来说,了解数据库的TPS.QPS很有必要(QPS:每秒查询数,即对数据库每秒的DML的操作数:TPS:每秒事物处理,即对数据库每秒DDL操作数),通过了解他们,可以掌握一个实 ...