类型:单调栈

传送门:>Here<

题意:给出若干宽度相同的矩形的高度(条形统计图),求最大子矩形面积

解题思路

单调栈的经典题

显然,最终的子矩形高度一定和某一个矩形相等(反证)。因此一个暴力的做法就是枚举每一个矩形,然后往两边扩散。在它左侧找到第一个高度比它小的,右侧也一样。则可以求出最大可扩散宽度,乘上高度即可以更新答案。复杂度$O(n^2)$

如果说要优化刚才的算法,也就可以优化寻找最大可扩散宽度的速度

让每一个矩形依次入栈,保存两个关键字:矩形高度,其最大左扩散宽度。保证栈内的矩形高度单调递增

我们可以得到结论:目前栈内的一个矩形$u$,在原图中从$u$开始一直到栈顶所在的矩形,高度一定都比$u$高。这就是为什么我们不需要统计栈内矩形的最大右扩散宽度,因为最大右扩散宽度就是栈顶

再回忆一下最大左扩散宽度的意义,是在它左侧的高度大于它的矩形们。这让我们又得出一个结论:目前栈内的一个矩形$u$,如果它的最大左扩散宽度大于$1$,则这些它所能扩散到的矩形一定都不在栈中。这也很容易发现,因为栈是单调递增的。或者,我们可以得到一个更形象的结论:栈内连续的两个矩形$u,v$,如果在原图中他们之间有矩形,那么这些矩形一定都高于$u,v$

因此刚才我们所说的最大左扩散宽度,其实等同于在原图中,它到栈中上一个矩形之间相隔了多少矩形

当一个新的矩形进来的时候,它会弹走若干个矩形。而栈内一个矩形实际上代表着原图中一段矩形。因此可以说是弹走了几段矩形。但是这些被弹走的矩形只不过出栈,在原图中并不会消失。因此他们所代表的的宽度不应当消失,所以我们将他们累积在新进来的这个矩形上。这也非常符合事实——这个新的矩形之所以能弹走这若干个矩形是因为自己比他们矮,因此都可以扩散到。换句话说,被弹走的这一系列矩形最多只能向右扩散到这个新矩形,因此留着它们就没有意义了

而对于任何一个要出栈的矩形,我们需要统计由它的高度所能扩散出去的最大子矩形面积。由于它的最大左扩散宽度已知,唯一需要知道的就是它的最大右扩散宽度。那么由于它在栈里,它的最大右扩散宽度也就是从它一直到最早先的栈顶之间的宽度。因此我们只需要在弹栈的过程中一路累积每个出栈矩形的最大左扩散宽度,加起来就是这一段宽度了。

另外,如果处理完了最后一个矩形以后栈依然有剩余,则应当弹完并更新答案

保证了每个矩形入栈以及出栈恰好一次,在正确性显然的条件下,复杂度$O(n)$

Code

/*By DennyQi 2018.8.18*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int ll
const int MAXN = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x<<) + (x<<) + c - '', c = getchar();return x * w;
}
int N,H,top,cnt,ans;
int h[MAXN],w[MAXN];
#undef int
int main(){
#define int ll
for(;;){
N=r;
if(!N) break;
top = ;
ans = ;
for(int i = ; i <= N; ++i){
H=r;
if(!top || H > h[top]){
h[++top] = H;
w[top] = ;
}
else{
cnt = ;
while(top > && H <= h[top]){
cnt += w[top];
ans = Max(ans, h[top] * cnt);
--top;
}
h[++top] = H;
w[top] = cnt+;
}
}
cnt = ;
while(top > ){
cnt += w[top];
ans = Max(ans, h[top] * cnt);
--top;
}
printf("%lld\n", ans);
}
return ;
}

☆ [POJ2559] Largest Rectangle in a Histogram 「单调栈」的更多相关文章

  1. poj2559 Largest Rectangle in a Histogram(单调栈)

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  2. POJ2559 Largest Rectangle in a Histogram (单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26012 ...

  3. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  4. 题解报告:poj 2559 Largest Rectangle in a Histogram(单调栈)

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  5. HDU-1506 Largest Rectangle in a Histogram【单调栈】

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  6. Largest Rectangle in a Histogram【单调栈模板】

    Largest Rectangle in a Histogram 题目链接(点击)来源poj 2559 A histogram is a polygon composed of a sequence ...

  7. hdu_1506:Largest Rectangle in a Histogram 【单调栈】

    题目链接 对栈的一种灵活运用吧算是,希望我的注释写的足够清晰.. #include<bits/stdc++.h> using namespace std; typedef long lon ...

  8. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    [题目链接] http://poj.org/problem?id=2559 [题目大意] 给出一些宽度为1的长方形下段对其后横向排列得到的图形,现在给你他们的高度, 求里面包含的最大长方形的面积 [题 ...

  9. HDU 1506 Largest Rectangle in a Histogram(单调栈、笛卡尔树)

    题意:给定n个连续排列的矩形的高,矩形的宽都为1.问最大矩形覆盖. 例如:n = 7,h[i] = (2 1 4 5 1 3 3),最大覆盖为8. Sample Input 7 2 1 4 5 1 3 ...

随机推荐

  1. Fastreport.net 如何在开发MVC应用程序时使用报表

    当你使用MVC模板创建自己的Web项目,会出现一个合理的问题 - 如何在其中使用FastReport.Net Web报表? 在这篇文章中,我会为你演示如何做到这一点. 由于在MVC体系结构中,视图与逻 ...

  2. IIS6下使用多域名和通配符证书

    由于SSL协议,在完成握手以前,都只能采用IP地址通信方式,没有办法获取访问地址中的域名信息,所以针对每个IP地址的每个端口,服务器只能返回相同的一张证书.如果要实现多个不同域名共享一个IP地址的缺省 ...

  3. Leetcode 2. Add Two Numbers(medium)

    You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...

  4. Python_计算文件夹大小

    计算文件夹大小 os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.path.join(path1[, path2[, ...]]) 将 ...

  5. 单例模式及设计url分发

      1.单例模式 2.admin源码解析 3.注册源码流程图 3.admin之url方法的使用 4.admin源码之url设计 5.设计url源码流程 6.总结 1.单例模式 https://www. ...

  6. Python之操作Excel

    使用之前先导入三个模块: import xlwt #只能写Excel import xlrd #只能读Excel import xlutils #修改Excel,在原来的基础上修改 一.写EXCEL ...

  7. 多线程系列之二:Single Thread Execution 模式

    一,什么是SingleThreadExecution模式?同一时间内只能让一个线程执行处理 二,例子 1.不安全的情况 用程序模拟 三个人频繁地通过一个只允许一个人经过的门.当人通过时,统计人数便会增 ...

  8. Java 数据库操作

    目录 Java数据库组织架构 下载驱动包 连接数据库 连接数据库的三个步骤 连接数据库的高开销 Statement接口介绍 PreparedStatement类 使用PreparedStatement ...

  9. 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'

    ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...

  10. 解决ImportError: cannot import name 'webdriver' from 'selenium' (C:\Users\Mr.Su\PycharmProjects\***\venv\selenium.py)

    报错信息如下图所示: 解决方案:将项目根目录下的自己创建的selenium.py文件重命名.