Codeforces 886E Maximum Element 组合数学 + dp
我们定义dp[ i ]表示长度为 i 的序列, 最后没有一个==k的时候返回的方案数, 也就是最后强制返回 i 的方案数。
我们能得到dp方程 dp[ i ] = sum(dp[ i - j - 1 ] * comb(i - 1, j) * F[ j ]) 0 <= j <= k - 1,
然后会发现这个东西不好转移, 我们可以把comb(i - 1, j) * F[ j ] 这个东西合并一下变成 F(i - 1) / F(i - 1 - j)
然后就变成 dp[ i ] = F(i - 1) * sum(dp[ i - j - 1] / F(i - j - 1)) 0 <= j <= k - 1, 然后这个东西存个前缀和就好啦。
有了dp数组之后, 我们就算出最后答案等于 n 的方案数, 从总方案数里面减去就好啦。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); void add(int &a, int b) {
a += b; if(a >= mod) a -= mod;
} int Power(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1LL * ans * a % mod;
a = 1ll * a * a % mod; b >>= ;
}
return ans;
} int n, k, way, dp[N], prefix[N];
int F[N], Finv[N], inv[N], tmp, ans; int comb(int n, int m) {
if(n < m || n < ) return ;
return 1ll * F[n] * Finv[m] % mod * Finv[n - m] % mod;
} int main() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1ll * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1ll * Finv[i - ] * inv[i] % mod;
scanf("%d%d", &n, &k);
for(int i = ; i <= k; i++) {
dp[i] = F[i];
prefix[i] = (prefix[i - ] + 1ll * dp[i] * Finv[i] % mod) % mod;
}for(int i = k + ; i <= n; i++) {
dp[i] = (prefix[i - ] - prefix[i - k - ] + mod) % mod;
dp[i] = 1ll * dp[i] * F[i - ] % mod;
prefix[i] = (prefix[i - ] + 1ll * dp[i] * Finv[i] % mod) % mod;
}
ans = F[n];
add(ans, mod - dp[n]);
for(int i = ; i <= n - k; i++) {
add(ans, mod - (1ll * comb(n - , i - ) * dp[i - ] % mod * F[n - i] % mod));
}
printf("%d\n", ans);
return ;
} /*
*/
Codeforces 886E Maximum Element 组合数学 + dp的更多相关文章
- Codeforces 889C Maximum Element(DP + 计数)
题目链接 Maximum Element 题意 现在有这一段求序列中最大值的程度片段: (假定序列是一个1-n的排列) int fast_max(int n, int a[]) { int ans ...
- Codeforces - 702A - Maximum Increase - 简单dp
DP的学习计划,刷 https://codeforces.com/problemset?order=BY_RATING_ASC&tags=dp 遇到了这道题 https://codeforce ...
- Codeforces 375B Maximum Submatrix 2 (DP)
<题目链接> 题目大意:给出一个01矩阵,行与行之间可以互换位置,问能够得到最大的全1矩阵的面积. #include <bits/stdc++.h> using namespa ...
- Codeforces 332B Maximum Absurdity(DP+前缀和处理)
题目链接:http://codeforces.com/problemset/problem/332/B 题目大意:给你n个数和一个整数k,要求找到不相交的两个长度为k的区间,使得区间和最大,输出这两个 ...
- Codeforces - 102222A - Maximum Element In A Stack - 模拟
https://codeforc.es/gym/102222/problem/F 注意到其实用unsigned long long不会溢出. #include<bits/stdc++.h> ...
- 【CF886E】Maximum Element DP
[CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...
- 【CodeForces】889 C. Maximum Element 排列组合+动态规划
[题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...
- Codeforces 484B Maximum Value(高效+二分)
题目链接:Codeforces 484B Maximum Value 题目大意:给定一个序列,找到连个数ai和aj,ai%aj尽量大,而且ai≥aj 解题思路:类似于素数筛选法的方式,每次枚举aj,然 ...
- 【uoj#22】[UR #1]外星人 组合数学+dp
题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...
随机推荐
- mysql 命令行常用命令
1.显示数据库列表. show databases; 2.显示库中的数据表: use mysql; show tables; 3.显示数据表的结构: describe 表名; 4.建库: cr ...
- 基于注解的Dubbo服务配置
基于注解的Dubbo服务配置可以大大减少dubbo xml配置文件中的Service配置量,主要步骤如下: 一.服务提供方 1. Dubbo配置文件中增加Dubbo注解扫描 <!-- ...
- swift 实践- 12 -- UIPickerView
import UIKit class ViewController: UIViewController , UIPickerViewDelegate,UIPickerViewDataSource{ v ...
- HTML5-长按事件
<!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...
- 移动端touchstart,touchmove,touchend
近段时间使用html5开发一个公司内部应用,而触摸事件必然是移动应用中所必须的,刚开始以为移动设备上或许也会支持鼠标事件,原来是不支持的,好在webkit内核的移动浏览器支持touch事件,并且打包成 ...
- http超文本协议
当今web程序的开发技术真是百家争鸣,ASP.NET, PHP, JSP,Perl, AJAX 等等. 无论Web技术在未来如何发展,理解Web程序之间通信的基本协议相当重要, 因为它让我们理解了We ...
- MySql在windows上的安装
知乎安装教程 csdn安装教程 一.官网下载 ZIP Archive 内的软件包,mysql-xxx-win64.zip. 二.新建 MySQL 文件夹,解压缩下载包,进入文件夹(mysql-8.0. ...
- CF 494B 【Obsessive String】
很有趣的一道题 这道题提议很难懂,其实就是让你求合法的集合数目.合法的集合定义为: 1.集合中的所有串都是s的子串,且互不重叠 2.集合中的所有串都含有子串t. 看到网上很多题解说要用kmp,但我就不 ...
- ES6 Promise 全面总结
转载:点击查看原文 ES6 Promise对象 ES6中,新增了Promise对象,它主要用于处理异步回调代码,让代码不至于陷入回调嵌套的死路中. @-v-@ 1. Promise本质 Promise ...
- vue指令问题
挂载点:最外层标签就是vue实例的挂载点,即id或者类对应的 dom节点 模板:指挂载点内部的内容,在实例里使用template标签来构 建 h1标签放在body里面不使用 “template”是一样 ...