关于tensorflow conv2d卷积备忘的一点理解
**************input**************
[[[[-0.36166722 0.04847232 1.20818889 -0.1794038 -0.53244466]
[-0.67821187 -1.81838071 0.59005165 -1.17246294 0.33203208]
[-0.18631086 -0.68608224 0.07464688 0.28875718 -0.86492658]]
[[ 1.63322294 0.99059737 0.5923292 -0.80913633 -2.2539773 ]
[ 0.14436921 -0.45454684 -0.61321616 -1.01231539 1.54901564]
[ 0.38690856 1.84936357 0.55067211 0.3163861 -0.62082398]]
[[ 0.3655189 1.96013069 0.91159737 1.89106071 2.04635859]
[-1.13240027 -1.64421642 -1.23379624 -0.18057458 -0.37131071]
[-0.55824232 0.5738467 -1.02291656 0.8829596 -2.15986562]]]]
(1, 3, 3, 5)
*****************filter*************
[[[[ 0.43657559 1.01129627]
[ 0.30303505 1.57386982]
[ 0.63144618 -0.38221657]
[ 1.03055692 0.27556673]
[ 0.14717487 -0.47002205]]]]
(1, 1, 5, 2)
***************result************
[[[[ 0.35645172 -0.55043042]
[-1.63396096 -4.25244951]
[-0.07182495 -0.81064451]]
[[ 0.22164512 3.82079363]
[-1.27720094 -1.34204817]
[ 1.31174088 3.47044706]]
[[ 3.57920766 2.66549063]
[-2.0124495 -3.1366334 ]
[-0.12367389 1.98808599]]]]
(1, 3, 3, 2)
import tensorflow as tf
input = tf.Variable(tf.random_normal([1,3,3,5]));
filter = tf.Variable(tf.random_normal([1,1,5,2]));
op = tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='VALID');
with tf.Session() as sess:
sess.run(tf.initialize_all_variables());
result=sess.run(op);
print('**************input**************');
print(sess.run(input));
print(input.shape);
print('*****************filter*************');
print(sess.run(filter));
print(filter.shape);
print('***************result************');
print(result);
print(result.shape);
关于tensorflow conv2d卷积备忘的一点理解的更多相关文章
- TensorFlow anaconda命令备忘
[查看tensorflow安装的版本] anaconda search -t conda tensorflow [选择版本安装] conda install -c anaconda tensorflo ...
- TCP的拥塞窗口和快速恢复机制的一些备忘及一点想法
rwnd(窗口,代表接收端的处理能力).cwnd(拥塞窗口,从发送端看当前网络整体承载能力).ssthresh(快速增长切换成慢速增长的界限值) 1.慢启动,是指数增长(对面确认多少个包,就增加多少) ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- TensorFlow中卷积
CNN中的卷积核及TensorFlow中卷积的各种实现 声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了“ ...
- Cheat (tldr, bropages) - Unix命令用法备忘单
cheat 是一个Unix命令行小工具,用来查询一些常用命令的惯用法(我们都知道,man page阅读起来太累了,常常是跳到最后去看 examples,但并不是所有man pages里面都有examp ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- AngularJS之备忘与诀窍
译自:<angularjs> 备忘与诀窍 目前为止,之前的章节已经覆盖了Angular所有功能结构中的大多数,包括指令,服务,控制器,资源以及其它内容.但是我们知道有时候仅仅阅读是不够的. ...
- mxnet与tensorflow的卷积实现细节比较
mxnet的卷积 kernel = 3 pad=1边界补充0后,不管stride是否1还是2,imgw = 奇数或者偶数, 都是从图像位置(0,0)开始卷积 tensorlfow的卷积 kernel ...
- Annotation 使用备忘
title: Annotation 使用备忘 date: 2016-11-16 23:16:43 tags: [Annotation] categories: [Programming,Java] - ...
随机推荐
- 移动 web 适配
一.移动 web 开发与适配 1.跑在手机端的 web 页面(H5 页面) 2.跨平台(PC 端.手机端 - 安卓.IOS) 3.基于 webview(终端开发技术的一个组件) 4.告别 IE 拥抱 ...
- Codeforces 837 简要题解
文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 并没有找到难度评级但感觉是div3div3div3场. A题 题意:一个单词的价值是里面大写字母的个数,一篇文章的价值是里面所有单词的价值的 ...
- springsecurity 源码解读之 AnonymousAuthenticationFilter
我们知道springsecutity 是通过一系列的 过滤器实现的,我们可以看看这系列的过滤器到底长成什么样子呢? 一堆过滤器,这个过滤器的设计设计上是 责任链设计模式. 这里我们可以看到有一个 An ...
- redis_字典_哈希hash
字典.哈希表基本数据结构 redis字典使用哈希表作为底层实现,基本结构就是数组+散列 typedef struct dictht { // 哈希表数组 dictEntry **table; // 哈 ...
- Note on Preliminary Introduction to Distributed System
今天读了几篇分布式相关的内容,记录一下.非经典论文,非系统化阅读,非严谨思考和总结.主要的着眼点在于分布式存储:好处是,跨越单台物理机器的计算和存储能力的限制,防止单点故障(single point ...
- [转]MYSQL性能查看(命中率,慢查询)
网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一 ...
- 携带cookie的跨域访问
携带cookie的跨域解决方案 有的时候访问后台的请求需要携带cookie以供后台分析,比如jQuery的ajax请求: $.ajax({ url: a_cross_domain_url, xhrFi ...
- Java集合排序(面试必考点之一)
集合是Java面试必考知识点,而集合的排序也是非常重要的,工作中经常用到,那么这个知识点也是必须要掌握的,下面是我曾经面试时被面试官问的问题: 根据API可知,Java集合的工具类Collection ...
- Javascript高级编程学习笔记(58)—— 事件(2)事件处理程序
事件处理程序 事件处理程序即响应某个事件的函数 事件处理程序以 “on” 开头 如“onclick”,“onload” HTML事件处理程序 某个元素支持的每种事件都可以使用一个与响应的事件处理程序同 ...
- 使用Java类加载SpringBoot、SpringCloud配置文件
我们都知道平常在使用SpringBoot和SpringCloud的时候,如果需要加载一两个配置文件的话我们通常使用@Value("${属性名称}")注解去加载.但是如果配置文件属性 ...