传送门

“CDQ分治”从来都没有听说过,写了这题才知道还有这么神奇的算法。

(被逼无奈)。w(゚Д゚)w

于是看了不少dalao的博客,对CDQ算法粗浅地了解了一点。(想要了解CDQ的概念,可以看下这位dalao的博客

所以,这道题要怎么做呢。。。

  根据,CDQ分治理论,这题按照题意建出来储存信息的数组很明显是个三维的。很巧的是,CDQ分治的好处之一就是降维(根据官方民间说法,每降一维要付出一个log的时间代价)。则本题的三维数组,根据CDQ就有:第一维用来直接排序,第二维做CDQ分治,第三维做树状数组。

为了能够更加透彻地理解此题思路,借鉴了洛谷dalao的题解。

【解题思路】

  • 这题有很多解法碰巧我们是作为CDQ分治的例题,于是这里就只介绍CDQ分治的解法
  • 一道三维偏序,所以先把所有属性进行多关键字排序,先按a排序,再按b排序,最后按c排序,这就保证了在数列里面,后面的a会比前面的a要大(相当于把a离散化)。
  • 接着就进行CDQ分治,对于一个区间l到r来说,a是已经排好序的。在CDQ分治完l--mid和mid+1--r这两个区间后,把l到r进行多关键字排序,这次先按b排序,再按c排序,最后按a排序,这就再保证了b的要求。
  • 然后像CDQ分治需要的那样,把小于等于mid的a的贡献统计起来,把1-c的区间全部加1,优化大于mid的值的答案。这是一个区间修改,单点查询的操作,可以用线段树或者树状数组解决,本人为了方便用了树状数组。
  • 记得最后还原树状数组。注意,如果直接对整个数组进行memset有可能会超时,我们只需对直接的操作进行反操作,把小于等于mid的a中,1-c的区间全部加-1即可。
  • 最后进行判重(为什么要判重呢?因为如果有几个相同的量,我们CDQ分治的时候并没有管它,直接计算就会把所有结果都计算出来。这是你如果不判重,那么就会把一个答案反复累加,最终答案就会变大)  

                                            ——摘自洛谷题解

那么融合了各位dalao的CDQ精华,以及本蒟蒻对CDQ的理解(+注释)后,就有了AC的极简代码。

#include<algorithm>
#include<cstdio>
using namespace std;
#define maxn 100005
struct node{int x,y,z,num,ans;}a[maxn];
int n,m,tot,ans[maxn],sum[maxn<<];
inline bool cmp2(const node&a,const node&b)
{
if(a.y!=b.y) return a.y<b.y;
return a.z<b.z;
}
inline bool cmp1(const node&a,const node&b)
{
if(a.x!=b.x) return a.x<b.x;
return cmp2(a,b);
}
inline void Add(int x,int y)//极简的树状数组
{
for(;x<=m;x+=x&(-x)) sum[x]+=y;
}
inline int Quary(int x)//合并左右子区间的贡献
{
int ans=;
for(;x;x-=x&(-x)) ans+=sum[x];
return ans;
}
inline void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>;
CDQ(l,mid);CDQ(mid+,r);//先递归处理子问题
sort(a+l,a+mid+,cmp2);
sort(a+mid+,a+r+,cmp2);//把两个子问题的第一维分别进行排序。
for(int i=mid+,j=l;i<=r;i++)
{
while(j<=mid&&a[j].y<=a[i].y) //若第二维的左子区间的a[j].y对右子区间产生了贡献
Add(a[j].z,a[j].num),j++;//就把第三维的a[j].z扔进树状数组
a[i].ans+=Quary(a[i].z);//归并排序
}
for(int i=l,max=a[r].y;i<=mid&&a[i].y<=max;i++) Add(a[i].z,-a[i].num);//清空树状数组(作案不留痕迹)
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
sort(a+,a+n+,cmp1);//按第一维排序
for(int i=;i<=n;i++,a[tot].num++)
if(a[i].x!=a[tot].x||a[i].y!=a[tot].y||a[i].z!=a[tot].z)
a[++tot]=a[i];//把可以符合题意的x,y,z先找出来,同时统计个数(分别)(相当于去重)
CDQ(,tot);//进行CDQ分治
for(int i=;i<=tot;i++)
ans[a[i].ans+a[i].num-]+=a[i].num;//把重复的加回来
for(int i=;i<n;i++)
printf("%d\n",ans[i]);
return ;
}

陌上花开——CDQ分治的更多相关文章

  1. P3810 陌上花开 CDQ分治

    陌上花开 CDQ分治 传送门:https://www.luogu.org/problemnew/show/P3810 题意: \[ 有n 个元素,第 i 个元素有 a_i. b_i. c_i 三个属性 ...

  2. 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)

    3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1439  Solved: 648[Submit][Status][Discuss ...

  3. bzoj3262陌上花开 cdq分治

    3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 2794  Solved: 1250[Submit][Status][Discus ...

  4. 洛谷P3810 陌上花开 CDQ分治(三维偏序)

    好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...

  5. 【CJOJ2433】陌上花开 CDQ分治

    [CJOJ2433]陌上花开 CDQ呲嘚秋分治 WA果然呲嘚秋分治跑得比树套树还快!!!(md理论复杂度不是一样的吗) 但树套树不知道比呲嘚秋高到哪里去辣装X用 Orz hzwer 第一维sort,第 ...

  6. 【BZOJ3262】陌上花开 cdq分治

    [BZOJ3262]陌上花开 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义 ...

  7. bzoj3262: 陌上花开(cdq分治+树状数组)

    3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...

  8. BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  9. bzoj 3262 陌上花开 - CDQ分治 - 树状数组

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

随机推荐

  1. [转载]Oracle 游标使用全解

    这个文档几乎包含了oracle游标使用的方方面面,全部通过了测试 -- 声明游标:CURSOR cursor_name IS select_statement --For 循环游标--(1)定义游标- ...

  2. mycat工作原理

    Mycat的原理并不复杂,复杂的是代码,如果代码也不复杂,那么早就成为一个传说了. Mycat的原理中最重要的一个动词是“拦截”,它拦截了用户发送过来的SQL语句,首先对SQL语句做了一些特定的分析: ...

  3. JQuery ajax请求返回(parsererror)异常处理

    目前在学习一个Java应用的框架,反编译后在执行时一直报错,界面上显示”parsererror”,经过JavaScript调试后发现更详细的错误提示信息是 Unexpected token ' in ...

  4. 使用WebClient下载网页,用正则匹配需要的内容

    WebClient是一个操作网页的类 webClient web=new  WebClient(): web.DownloadString(网页的路径,可以是本地路径);--采用的本机默认的编码格式  ...

  5. Q_DECL_OVERRIDE

    Q_DECL_OVERRIDE也就是c++的override # define Q_DECL_OVERRIDE override 在重写虚函数时会用到, 作用是防止写错虚函数: void keyPre ...

  6. Java泛型中的标记符

    E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Number(数值类型) ? -  表示不确 ...

  7. 13: vue项目结构搭建与开发

    vue其他篇 01: vue.js安装 02: vue.js常用指令 03: vuejs 事件.模板.过滤器 目录: 1.1 初始化项目 1.2 配置API接口,模拟后台数据 1.3 项目整体结构化开 ...

  8. ldap集成jira

    jira默认支持ldap,通过管理员登录jira 点击 User Management --> User Directories --> Add Directory. 进行ldap配置: ...

  9. bzoj 2216 Lightning Conductor - 二分法 - 动态规划

    题目传送门 需要root权限的传送门 题目大意 给定一个长度为$n$的数组,要求对每个$1 \leqslant i \leqslant n$找到最小整数的$p$,对于任意$j$满足使得$a_{i} + ...

  10. 尚硅谷面试第一季-08Spring支持的常用数据库事务传播属性和事务隔离级别

    目录结构: 关键代码: BookShopServiceImpl.java package Spring支持的常用数据库事务传播属性和事务隔离级别.tx.service.impl; import Spr ...