ZOJ 4019 Schrödinger's Knapsack
Schrödinger's Knapsack
Time Limit: 1 Second Memory Limit: 65536 KB
DreamGrid has a magical knapsack with a size capacity of called the Schrödinger's knapsack (or S-knapsack for short) and two types of magical items called the Schrödinger's items (or S-items for short). There are S-items of the first type in total, and they all have a value factor of ; While there are S-items of the second type in total, and they all have a value factor of . The size of an S-item is given and is certain. For the -th S-item of the first type, we denote its size by ; For the -th S-item of the second type, we denote its size by .
But the value of an S-item remains uncertain until it is put into the S-knapsack (just like Schrödinger's cat whose state is uncertain until one opens the box). Its value is calculated by two factors: its value factor , and the remaining size capacity of the S-knapsack just after it is put into the S-knapsack. Knowing these two factors, the value of an S-item can be calculated by the formula .
For a normal knapsack problem, the order to put items into the knapsack does not matter, but this is not true for our Schrödinger's knapsack problem. Consider an S-knapsack with a size capacity of 5, an S-item with a value factor of 1 and a size of 2, and another S-item with a value factor of 2 and a size of 1. If we put the first S-item into the S-knapsack first and then put the second S-item, the total value of the S-items in the S-knapsack is ; But if we put the second S-item into the S-knapsack first, the total value will be changed to . The order does matter in this case!
Given the size of DreamGrid's S-knapsack, the value factor of two types of S-items and the size of each S-item, please help DreamGrid determine a proper subset of S-items and a proper order to put these S-items into the S-knapsack, so that the total value of the S-items in the S-knapsack is maximized.
Input
The first line of the input contains an integer (about 500), indicating the number of test cases. For each test case:
The first line contains three integers , and (), indicating the value factor of the first type of S-items, the value factor of the second type of S-items, and the size capacity of the S-knapsack.
The second line contains two integers and (), indicating the number of the first type of S-items, and the number of the second type of S-items.
The next line contains integers (), indicating the size of the S-items of the first type.
The next line contains integers (), indicating the size of the S-items of the second type.
It's guaranteed that there are at most 10 test cases with their larger than 100.
Output
For each test case output one line containing one integer, indicating the maximum possible total value of the S-items in the S-knapsack.
Sample Input
3
3 2 7
2 3
4 3
1 3 2
1 2 10
3 4
2 1 2
3 2 3 1
1 2 5
1 1
2
1
Sample Output
23
45
10
Hint
For the first sample test case, you can first choose the 1st S-item of the second type, then choose the 3rd S-item of the second type, and finally choose the 2nd S-item of the first type. The total value is .
For the second sample test case, you can first choose the 4th S-item of the second type, then choose the 2nd S-item of the first type, then choose the 2nd S-item of the second type, then choose the 1st S-item of the second type, and finally choose the 1st S-item of the first type. The total value is .
The third sample test case is explained in the description.
It's easy to prove that no larger total value can be achieved for the sample test cases.
Author: CHEN, Shihan
Source: The 18th Zhejiang University Programming Contest Sponsored by TuSimple
题意
有个容量为c的背包,两类物品,其权值分别为k1、k2,第一种物品有n个,第二种有m个,每个物体都有自己的体积。当放进一个物体进入背包时,其获得的价值的对应的权值k乘上放入当前物体后剩余的容量。现在问,能够获得的最大价值是多少?
分析
显然,对于同一类物品,取其体积最小的几个是最划算的,所以先排序。那么根据这个来定义状态dp[i]][j]为选了第一种前i个、第二种前j个,最小的前i个和前j个是必选的,那么此时的容量我们能够计算出来。状态转移也很显然,dp[i][j]=max(dp[i-1][j],dp[i][j-1]) (c-suma[i]-sumb[j]>0),其中suma和sumb为前缀和。边界的地方要处理一下。
#include<cstdio>
#include<cstring>
#include<map>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
const int maxn = 5e5+;
using namespace std;
typedef long long ll; ll dp[][];
ll k1,k2,c;
int n,m;
ll ans;
ll a[],b[];
ll suma[],sumb[];
int main(){
#ifdef LOCAL
freopen("data.in","r",stdin);
#endif // LOCAL
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld",&k1,&k2,&c);
scanf("%d%d",&n,&m); for(int i=;i<=n;i++) scanf("%lld",&a[i]);
for(int i=;i<=m;i++) scanf("%lld",&b[i]);
sort(a+,a++n);
sort(b+,b++m);
suma[]=;
for(int i=;i<=n;i++) suma[i]=suma[i-]+a[i];
sumb[]=;
for(int i=;i<=m;i++) sumb[i]=sumb[i-]+b[i];
ans=-;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
dp[i][j]=;
if(i==&&j==) continue;
if(i==){
if(c>=sumb[j]){
dp[i][j]=dp[i][j-]+k2*(c-sumb[j]);
}
}else if(j==){
if(c>=suma[i]){
dp[i][j]=dp[i-][j]+k1*(c-suma[i]);
}
}else{
ll s = suma[i]+sumb[j];
if(c>=s){
dp[i][j]=max(dp[i][j-]+k2*(c-s),dp[i-][j]+k1*(c-s));
}
}
ans=max(ans,dp[i][j]);
}
}
cout<<ans<<endl;
} return ;
}
ZOJ 4019 Schrödinger's Knapsack的更多相关文章
- ZOJ 4019 Schrödinger's Knapsack (from The 18th Zhejiang University Programming Contest Sponsored by TuSimple)
题意: 第一类物品的价值为k1,第二类物品价值为k2,背包的体积是 c ,第一类物品有n 个,每个体积为S11,S12,S13,S14.....S1n ; 第二类物品有 m 个,每个体积为 S21,S ...
- ZOJ - 4019 Schrödinger's Knapsack (背包,贪心,动态规划)
[传送门]http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5747 [题目大意]:薛定谔的背包.薛定谔的猫是只有观测了才知道猫的死 ...
- zoj4019 Schrödinger's Knapsack(dp)
题意:有两种物品分别为n,m个,每种物品对应价值k1,k2.有一个容量为c的背包,每次将一个物品放入背包所获取的价值为k1/k2*放入物品后的剩余体积.求问所获取的最大价值. 整体来看,优先放入体积较 ...
- ZOJ People Counting
第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ 3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...
- ZOJ 3686 A Simple Tree Problem
A Simple Tree Problem Time Limit: 3 Seconds Memory Limit: 65536 KB Given a rooted tree, each no ...
- ZOJ Problem Set - 1394 Polar Explorer
这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...
- ZOJ Problem Set - 1392 The Hardest Problem Ever
放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...
- ZOJ Problem Set - 1049 I Think I Need a Houseboat
这道题目说白了是一道平面几何的数学问题,重在理解题目的意思: 题目说,弗雷德想买地盖房养老,但是土地每年会被密西西比河淹掉一部分,而且经调查是以半圆形的方式淹没的,每年淹没50平方英里,以初始水岸线为 ...
- ZOJ Problem Set - 1006 Do the Untwist
今天在ZOJ上做了道很简单的题目是关于加密解密问题的,此题的关键点就在于求余的逆运算: 比如假设都是正整数 A=(B-C)%D 则 B - C = D*n + A 其中 A < D 移项 B = ...
随机推荐
- Oracle 导入导出报错的简单处理
这边出现报错: 简单查了下资料发现: https://blog.csdn.net/lichkui/article/details/5489708 在imp 的命令后面 增加buffer 即可 比如 i ...
- oracle11.2.0.1 deferred_segment_creation 造成exp imp 空表无法导出的问题
oracle11g 新增加了 deferred_segment_creation 的属性在创建的数据库表中,如果表中没有数据,并且这个参数是true的话,并不是直接就在数据文件中的增加相应的segm ...
- CentOS7 完整安装后创建私有的yum仓库
1. 安装 CentOS7 安装的包比较全,应用可以直接用. 2. 第一步创建 yum 包的存放路径 mkdir -p /var/www/html/ 3. 创建私有仓库 createrepo -v / ...
- centos目录
cd /opt cd /home/lujie cd /etc cd /usr cd /dev cd /bin cd /mnt cd /media cd /tmp
- poj 3694 Network(割边+lca)
题目链接:http://poj.org/problem?id=3694 题意:一个无向图中本来有若干条桥,有Q个操作,每次加一条边(u,v),每次操作后输出桥的数目. 分析:通常的做法是:先求出该无向 ...
- hive 远程管理
- python 字符串内置方法实例
一.字符串方法总结: 1.查找: find(rfind).index(rindex).count 2.变换: capitalize.expandtabs.swapcase.title.lower.up ...
- delphi有关获取其他程序的窗口及对窗口内控件的操作
1.获取当前所有窗口 procedure TForm1.Button1Click(Sender: TObject);var szText: array[0..254] of char; hCurren ...
- jvm学习二:类加载器
前一节详细的聊了一下类的加载过程,本节聊一聊类的加载工具,类加载器 --- ClassLoader 本想自己写的,查资料的时候查到一篇大神的文章,写的十分详细 大家直接过去看吧http://blo ...
- solr 字段设置不存储表示不会进行分词
solr 字段设置不存储表示不会进行分词