【题意】给定n,求Σφ(i),n<=10^10。

【算法】杜教筛

【题解】

定义$s(n)=\sum_{i=1}^{n}\varphi(i)$

杜教筛$\sum_{i=1}^{n}(\varphi *I)(i)=\sum_{i=1}^{n}\sum_{d|i}\varphi(d)=\sum_{i=1}^{n}\sum_{d=1}^{\frac{n}{i}}\varphi(d)$

根据$id=\varphi*I$,$\sum_{i=1}^{n}(\varphi*I)(i)=\frac{i(i+1)}{2}$

所以$s(n)=\frac{i(i+1)}{2}-\sum_{i=2}^{n}s(\frac{n}{i})$

然后递归进行即可,预处理前$n^{\frac{2}{3}}$项,则复杂度为O(n^(2/3))。

本质上是对于id=φ*I,其中I和id的前缀和都可以直接计算,所以可以用杜教筛处理φ的前缀和。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int sq=,pre=,MOD=1e9+,inv=(MOD+)/;
int a[],phi[pre+],prime[pre],tot;
ll N;
bool vis[pre+];
int solve(ll n){
if(n<=pre)return phi[n];
if(~a[N/n])return a[N/n];
int ans=n%MOD*((n+)%MOD)%MOD*inv%MOD;//
ll pos=;
for(ll i=pos;i<=n;i=pos+){
pos=n/(n/i);
ans=(ans-1ll*(pos-i+)%MOD*solve(n/i)%MOD+MOD)%MOD;
}
return a[N/n]=ans;
}
int main(){
scanf("%lld",&N);
phi[]=;
for(int i=;i<=pre;i++){
if(!vis[i]){phi[prime[++tot]=i]=i-;}
for(int j=;j<=tot&&i*prime[j]<=pre;j++){
vis[i*prime[j]]=;
if(i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
phi[i]=(phi[i]+phi[i-])%MOD;
}
memset(a,-,sizeof(a));
printf("%d",solve(N));
return ;
}

【51nod】1239 欧拉函数之和 杜教筛的更多相关文章

  1. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  2. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  3. 51nod1244 欧拉函数之和 杜教筛

    和上一题差不多,一个是μ*I=e,一个是φ*I=Id 稍改就得到了这题的代码 (我会告诉你我一开始逆元算错了吗) #include <bits/stdc++.h> #define MAX ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. BZOJ4805: 欧拉函数求和(杜教筛)

    4805: 欧拉函数求和 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 614  Solved: 342[Submit][Status][Discus ...

  6. 【bzoj3944/bzoj4805】Sum/欧拉函数求和 杜教筛

    bzoj3944 题目描述 输入 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 输出 一共T行,每行两个用空格分隔的数ans1,ans2 样例输 ...

  7. LOJ6686 Stupid GCD(数论,欧拉函数,杜教筛)

    做题重心转移到 LOJ 了. 至于为什么,如果你知道“……”的密码,就去看吧. LOJ 上用户自创题大多数都不可做,今天看到个可做题(而且还是个水题),就来做了一发. 明显枚举立方根.(以下令 $m= ...

  8. BZOJ 4805: 欧拉函数求和 杜教筛

    https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...

  9. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

随机推荐

  1. linux 十个命令

    http://www.roncoo.com/article/detail/124514

  2. chapter4 module and port

    如果模块和外界没有交换信号,则可以没有端口列表. 端口隐含声明为wire,如果输出端口需要保存数值,则必须显式声明为reg,如需要保持数值知道下一个时钟边沿

  3. BZOJ3732Network——kruskal重构树+倍增+LCA/最小生成树+倍增

    题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...

  4. Nodejs+Express+Mysql实现简单用户管理增删改查

    源码地址 https://github.com/king-y/NodeJs/tree/master/user 目录结构 mysql.js var mysql = require('mysql'); v ...

  5. c# 获取变量名

    也不知道哪里需要用到.反正很多人问. 这里就贴一下方法,也是忘记从哪里看到的了,反正是转载的! public static void Main(string[] args) { string abc= ...

  6. ubuntu16.04 NFS系统挂载

    一:服务器端 step1:关闭防火墙 sudo ufw disable step2:安装nfs sudo apt-get install nfs-kernel-server step3: 打开/etc ...

  7. 自学Python6.1-模块简介

    自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...

  8. 洛谷 P1076 寻宝 解题报告

    P1076 寻宝 题目描述 传说很遥远的藏宝楼顶层藏着诱人的宝藏.小明历尽千辛万苦终于找到传说中的这个藏宝楼,藏宝楼的门口竖着一个木板,上面写有几个大字:寻宝说明书.说明书的内容如下: 藏宝楼共有\( ...

  9. A1085. Perfect Sequence

    Given a sequence of positive integers and another positive integer p. The sequence is said to be a & ...

  10. PHP iconv 解决utf-8和gb2312编码转换问题

    就一个很简单的函数iconv();但是就是这个函数在网上找了很多例子,都无法成功转换,这是为什么呢?     终于皇天不负有心人,答案还是让我找到了. 网上的都是这样用的   <?php $co ...