Domination(概率DP)
Domination
题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384
Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.
Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.
"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.
Input
There are multiple test cases. The first line of input contains an integer Tindicating the number of test cases. For each test case:
There are only two integers N and M (1 <= N, M <= 50).
Output
For each test case, output the expectation number of days.
Any solution with a relative or absolute error of at most 10-8 will be accepted.
Sample Input
2
1 3
2 2
Sample Output
3.000000000000
2.666666666667 题意: 给出一个n*m的棋盘,问下棋下到每行每列均有一个棋的情况步数的期望值 思路: 这个数据虽然不大,但是搜索那些肯定是不行的,但是我们又要列出所有的情况,就只能用记忆化搜索,
期望值就是每个步数的概率乘以这个步数之和,所以我们要求出每个步数分别的概率是多少,在这里我们使用三维dp
dp[i][j][k] 代表的是k个棋已经占了i行j列,保证i行并且j列里面都会有一个棋
然后我们想下怎么推导呢想一下,我们每多下一个棋,有四种可能
第一种 多占了一列
第二种 多占了一行
第三种 下在对角线,占一行一列
第四种 下在了之前已经占过的行列上
就可以推导出式子dp[i][j][k]=dp[i][j-1][k-1]+dp[i-1][j][k-1]+dp[i-1][j-1][k-1]+dp[i][j][k-1];
这四种可能的和,但是我下棋的时候每个情况有多少个位置可以下,这里也要求下概率
占一行(意思是这个棋的列要下在之前占过的列的位置,因为要新占一行,所以选的行就是剩下没被占过的数量,然后再除以总的剩下可以下的位置)
其他的以此类推
然后dp数组就存的是概率,我们再去枚举那个占了整个棋盘的概率dp[n][m][i]*i即可
大佬博客:https://blog.csdn.net/cq_pf/article/details/48393897
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double dp[][][*];
int n,m;
void solve()
{
memset(dp,,sizeof(dp));
dp[][][]=1.0;
for(int i=;i<=n;i++)//枚举行
{
for(int j=;j<=m;j++)//枚举列
{
for(int k=;k<=n*m;k++)//枚举下的棋子个数
{
if(i==n&&j==m)//下最后一个棋的时候没有既不占列也不占行的可能性
{
dp[i][j][k]=(dp[i][j-][k-]*(m-j+)*i)/(n*m-k+)+(dp[i-][j][k-]*(n-i+)*j)/(n*m-k+)+
(dp[i-][j-][k-]*(m-j+)*(n-i+))/(n*m-k+);
}
else{
dp[i][j][k]=(dp[i][j-][k-]*(m-j+)*i)/(n*m-k+)+(dp[i-][j][k-]*(n-i+)*j)/(n*m-k+)+
(dp[i-][j-][k-]*(m-j+)*(n-i+))/(n*m-k+)+(dp[i][j][k-]*(j*i-(k-)))/(n*m-k+);
}
}
}
}
double sum=;
for(int i=;i<=n*m;i++)//算期望值
{
sum+=dp[n][m][i]*i;
}
printf("%.12lf\n",sum);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
solve();
}
}
Domination(概率DP)的更多相关文章
- ZOJ 3822 Domination 概率dp 难度:0
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822 Domination 概率dp 2014牡丹江站D题
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822 Domination (概率dp 天数期望)
题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...
- ZOJ 3822 Domination(概率dp 牡丹江现场赛)
题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...
- ZOJ 3822 Domination(概率dp)
一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...
- zoj3822 Domination 概率dp --- 2014 ACM-ICPC Asia Mudanjiang Regional Contest
一个n行m列的棋盘,每次能够放一个棋子.问要使得棋盘的每行每列都至少有一个棋子 须要的放棋子次数的期望. dp[i][j][k]表示用了k个棋子共能占据棋盘的i行j列的概率. 那么对于每一颗棋子,在现 ...
- ZOJ3822 ACM-ICPC 2014 亚洲杯赛事现场牡丹江司D称号Domination 可能性DP
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822(概率dp)
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Ju ...
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
随机推荐
- com.netflix.zuul.exception.ZuulException: Forwarding error
一.问题描述 在使用Spring Cloud的zuul组件,做路由转发时,每次重新启动后端服务,头几次调用都会出现com.netflix.zuul.exception.ZuulException: F ...
- apply、call
call(),apply() 1.每个函数都包含两个非继承而来的方法:call()和apply() 2.在特定的作用域内调用函数,等于设置函数体内的this对象,以扩充函数赖以运行的作用域 3.app ...
- linux常见基本命令
目录 1.更改文件基本属性 2.Linux文件与目录管理 3.Linux用户和用户组管理 4.磁盘管理 5.Linux vi/vim 6.linux查看防火墙状态及开启关闭命令 1.更改文件基本属性 ...
- D - Power Tower欧拉降幂公式
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...
- iBeacon室内定位原理解析【转】
目前,技术发展持续火热,因着iBeacon的定位精度和造价都比较符合国内室内定位的市场需求,下面我们来聊一聊iBeacon室内定位原理. iBeacon定位原理 iBeacon是一项低耗能蓝牙技术,工 ...
- laravel源码解析
本专栏系列文章已经收录到 GitBooklaravel源码解析 Laravel Passport——OAuth2 API 认证系统源码解析(下)laravel源码解析 Laravel Passport ...
- 利用sqlldr从MySQL导出一张表数据到Oracle
根据业务需求,需要从MySQL库中同步一张表tap_application到Oracle中,下面是记录的导入过程. 1. 查看MySQL表结构 desc tap_application; +----- ...
- python assert使用说明
python assert断言的作用 python assert断言是声明其布尔值必须为真的判定,如果发生异常就说明表达示为假. assert断言语句的语法格式 判断a与1.b是否一致,msg类似备注 ...
- iOS封装功能生成 .framework
前言 如果你想将你开发的控件与别人分享,一种方法是直接提供源代码文件.然而,这种方法并不是很优雅.它会暴露所有的实现细节,而这些实现你可能并不想开源出来.此外,开发者也可能并不想看到你的所有代码,因为 ...
- 大量的QT控件及示例发放
QT属性控件项目https://github.com/lexxmark/QtnProperty 比特币交易软件https://github.com/JulyIGHOR/QtBitcoinTrader ...