tensorflow入门笔记(三) tf.GraphKeys
tf.GraphKeys类存放了图集用到的标准名称。
该标准库使用各种已知的名称收集和检索图中相关的值。例如,tf.Optimizer子类在没有明确指定待优化变量的情况下默认优化被收集到tf.GraphKeys.TRAINABLE_VARIABLES中的变量;但如果通过列表的形式明确地指定了需要优化的变量,那优化器就会优化指定的变量。
Graph中定义了下列standard keys:
- GLOBAL_VARIABLES: 变量对象的默认集合,在分布式环境中被共享。通常,所有的TRAINABLE_VARIABLES变量会在MODEL_VARIABLES中,而所有的MODEL_VARIABLES又会在GLOBAL_VARIABLES中。即TRAINABLE_VARIABLES是MODEL_VARIABLES的子集,MOEDL_VARIABLES是GLOBAL_VARIABLES的子集。所以,MODEL_VARIABLES集合中有部分变量不需要训练。
- LOCAL_VARIABLES: 变量对象的子集,对每台机器来说都是本地的。该类型变量通常用作临时变量(temporarily variables),比如counters。可以使用tf.contrib.framework.local_variable将变量添加到LOCAL_VARIABLES集合中。
- MODEL_VARIABLES: 变量对象的子集,在模型中被用作接口。可以使用tf.contrib.framework.model_variable将变量添加到该集合。
- TRAINABLE_VARIABLES: 变量对象的子集,会被图中的优化器训练。
- SUMMARIES: 图中创建的summary Tensor对象。
- QUEUE_RUNNERS: 用来为计算产生输入的QueueRunners对象的集合。
- MOVING_AVERAGE_VARIABLES: 变量对象的子集,保持滑动平均。
- REGULARIZATION_LOSSES: 图构造过程中的正则化损失。
下列standrad keys虽然被定义,但是不像其它standard keys那样可以被自动填充:
- WEIGHTS
- BIASES
- ACTIVATIONS
有如下Class Members:
- ACTIVATIONS
- ASSET_FILEPATHS
- BIASES
- CONCATENATED_VARIABLES
- COND_CONTEXT
- EVAL_STEP
- GLOBAL_STEP
- GLOBAL_VARIABLES
- INIT_OP
- LOCAL_INIT_OP
- LOCAL_RESOURCES
- LOCAL_VARIABLES
- LOSSES
- METRIC_VARIABLES
- MODEL_VARIABLES
- MOVING_AVERAGE_VARIABLES
- QUEUE_RUNNERS
- READY_FOR_LOCAL_INIT_OP
- READY_OP
- REGULARIZATION_LOSSES
- RESOURCES
- SAVEABLE_OBJECTS
- SAVERS
- SUMMARIES
- SUMMARY_OP
- TABLE_INITIALIZERS
- TRAINABLE_RESOURCES_VARIABLES
- TRAINABLE_VARIABLES
- TRAIN_OP
- UPDATE_OPS
- VARIABLES
- WEIGHTS
- WHILE_CONTEXT
部分相关函数:
- tf.Graph.add_to_collection(name, value) # 将value放入name命名的collection中
- tf.Graph.add_to_collections(names,value) # 将value放入names命名的多个collections中
- tf.add_to_collection(name,value) # tf.Graph.add_to_collection(name, value)的包装器wrapper
- tf.Graph.get_collection(name, scope=None) # 返回名为name的collection中values构成的列表。如果collection中不存在value,会返回一个empty list
# 已知collection存在
- tf.Graph.get_collection_ref(name) # 返回名为name的collection中values构成的列表。如果collection中不存在,会创建一个empty
# collection,并返回一个empty list (collection是否存在未知)
- tf.get_collection(key, scope=None) # tf.Graph.get_collection()的包装器
- tf.get_collection_ref(key) # tf.Graph.get_collection_ref()的包装器
tensorflow入门笔记(三) tf.GraphKeys的更多相关文章
- 1 TensorFlow入门笔记之基础架构
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- tensorflow入门笔记(四) tf.summary 模块
模块内的函数: tf.summary.audio(name, tensor, sample_rate, max_outputs=3, collections=None, family=None) 输出 ...
- tensorflow学习笔记(三十四):Saver(保存与加载模型)
Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...
- OpenGLES入门笔记三
在入门笔记一中比较详细的介绍了顶点着色器和片面着色器. 在入门笔记二中讲解了简单的创建OpenGL场景流程的实现,但是如果在场景中渲染任何一种几何图形,还是需要入门笔记一中的知识:Vertex Sha ...
- tensorflow入门笔记(一) tf.app.flags.FLAGS
tf.app.flags.DEFINE_xxx()就是添加命令行的optional argument(可选参数),而tf.app.flags.FLAGS可以从对应的命令行参数取出参数.举例如下: FL ...
- tensorflow学习笔记三:实例数据下载与读取
一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们 ...
- tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构
Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(A ...
- TensorFlow学习笔记之--[tf.app.flags使用方法]
很多时候在运行python代码的时候我们需要从外部定义参数,从而避免每次都需要改动代码.所以一般我们都会使用 argparse 这个库.其实TensorFlow也提供了这个功能,那就是 tf.app. ...
- tensorflow入门笔记(五) name_scope和variable_scope
一.上下文管理器(context manager) 上下文管理器是实现了上下文协议的对象,主要用于资源的获取与释放.上下文协议包括__enter__.__exit__,简单说就是,具备__enter_ ...
随机推荐
- 【Unity】序列化字典Dictionary的问题
问题:在C#脚本定义了public Dictionary字典,然而在编辑器检视面板Editor Inspector中看不到(即无法序列化字典).即不能在编辑器中拖拽给字典赋值. 目标:检视面板Insp ...
- 【SpringMVC学习07】SpringMVC中的统一异常处理
我们知道,系统中异常包括:编译时异常和运行时异常RuntimeException,前者通过捕获异常从而获取异常信息,后者主要通过规范代码开发.测试通过手段减少运行时异常的发生.在开发中,不管是dao层 ...
- CFA一级知识点总结
更多来自: www.vipcoursea.com Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in ...
- zeromq使用模式实验总结
zeromq:官网 安装 demo及各语言绑定 golang绑定 实验环境:win10 x64/centos6 x86 zeromq4.0.6 zmq三种模式:push/pull.pub/sub.r ...
- 核态获取PsLoadedModuleList地址的稳定方法
转载: https://blog.csdn.net/celestialwy/article/details/1261407 PsLoadedModuleList是Windows加载的所有内核模 ...
- node.js 简单的获取命令参数
class Argvs { constructor() { this.argvsAll = this.argvsAll(); } argvsAll() { return process.argv.sl ...
- 错误票据|2013年蓝桥杯B组题解析第七题-fishers
错误票据 某涉密单位下发了某种票据,并要在年终全部收回. 因为工作人员疏忽,在录入ID号的时候发生了一处错误,造成了某个ID断号,另外一个ID重号. 你的任务是通过编程,找出断号的ID和重号的ID. ...
- Diagnostics: File file:/tmp/spark-***/__spark_libs__***.zip does not exist
Diagnostics: File file:/tmp/spark-c03df206-c90e-4c97-a2d6-a5d3fdb17811/__spark_libs__303213348409500 ...
- PHP封装类 【 设置分页 】 !!! 可以直接引用 !!! 都有自己理解的注释,挺详细的,有搜到的朋友可以能帮到你们 【 新手一看练两遍就懂 】
在网页要显示出的内容,就是客户能看到的东西 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &q ...
- Android必学-异步加载+Android自定义View源码【申明:来源于网络】
Android必学-异步加载+Android自定义View源码[申明:来源于网络] 异步加载地址:http://download.csdn.net/detail/u013792369/8867609 ...