tensorflow入门笔记(三) tf.GraphKeys
tf.GraphKeys类存放了图集用到的标准名称。
该标准库使用各种已知的名称收集和检索图中相关的值。例如,tf.Optimizer子类在没有明确指定待优化变量的情况下默认优化被收集到tf.GraphKeys.TRAINABLE_VARIABLES中的变量;但如果通过列表的形式明确地指定了需要优化的变量,那优化器就会优化指定的变量。
Graph中定义了下列standard keys:
- GLOBAL_VARIABLES: 变量对象的默认集合,在分布式环境中被共享。通常,所有的TRAINABLE_VARIABLES变量会在MODEL_VARIABLES中,而所有的MODEL_VARIABLES又会在GLOBAL_VARIABLES中。即TRAINABLE_VARIABLES是MODEL_VARIABLES的子集,MOEDL_VARIABLES是GLOBAL_VARIABLES的子集。所以,MODEL_VARIABLES集合中有部分变量不需要训练。
- LOCAL_VARIABLES: 变量对象的子集,对每台机器来说都是本地的。该类型变量通常用作临时变量(temporarily variables),比如counters。可以使用tf.contrib.framework.local_variable将变量添加到LOCAL_VARIABLES集合中。
- MODEL_VARIABLES: 变量对象的子集,在模型中被用作接口。可以使用tf.contrib.framework.model_variable将变量添加到该集合。
- TRAINABLE_VARIABLES: 变量对象的子集,会被图中的优化器训练。
- SUMMARIES: 图中创建的summary Tensor对象。
- QUEUE_RUNNERS: 用来为计算产生输入的QueueRunners对象的集合。
- MOVING_AVERAGE_VARIABLES: 变量对象的子集,保持滑动平均。
- REGULARIZATION_LOSSES: 图构造过程中的正则化损失。
下列standrad keys虽然被定义,但是不像其它standard keys那样可以被自动填充:
- WEIGHTS
- BIASES
- ACTIVATIONS
有如下Class Members:
- ACTIVATIONS
- ASSET_FILEPATHS
- BIASES
- CONCATENATED_VARIABLES
- COND_CONTEXT
- EVAL_STEP
- GLOBAL_STEP
- GLOBAL_VARIABLES
- INIT_OP
- LOCAL_INIT_OP
- LOCAL_RESOURCES
- LOCAL_VARIABLES
- LOSSES
- METRIC_VARIABLES
- MODEL_VARIABLES
- MOVING_AVERAGE_VARIABLES
- QUEUE_RUNNERS
- READY_FOR_LOCAL_INIT_OP
- READY_OP
- REGULARIZATION_LOSSES
- RESOURCES
- SAVEABLE_OBJECTS
- SAVERS
- SUMMARIES
- SUMMARY_OP
- TABLE_INITIALIZERS
- TRAINABLE_RESOURCES_VARIABLES
- TRAINABLE_VARIABLES
- TRAIN_OP
- UPDATE_OPS
- VARIABLES
- WEIGHTS
- WHILE_CONTEXT
部分相关函数:
- tf.Graph.add_to_collection(name, value) # 将value放入name命名的collection中
- tf.Graph.add_to_collections(names,value) # 将value放入names命名的多个collections中
- tf.add_to_collection(name,value) # tf.Graph.add_to_collection(name, value)的包装器wrapper
- tf.Graph.get_collection(name, scope=None) # 返回名为name的collection中values构成的列表。如果collection中不存在value,会返回一个empty list
# 已知collection存在
- tf.Graph.get_collection_ref(name) # 返回名为name的collection中values构成的列表。如果collection中不存在,会创建一个empty
# collection,并返回一个empty list (collection是否存在未知)
- tf.get_collection(key, scope=None) # tf.Graph.get_collection()的包装器
- tf.get_collection_ref(key) # tf.Graph.get_collection_ref()的包装器
tensorflow入门笔记(三) tf.GraphKeys的更多相关文章
- 1 TensorFlow入门笔记之基础架构
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- tensorflow入门笔记(四) tf.summary 模块
模块内的函数: tf.summary.audio(name, tensor, sample_rate, max_outputs=3, collections=None, family=None) 输出 ...
- tensorflow学习笔记(三十四):Saver(保存与加载模型)
Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...
- OpenGLES入门笔记三
在入门笔记一中比较详细的介绍了顶点着色器和片面着色器. 在入门笔记二中讲解了简单的创建OpenGL场景流程的实现,但是如果在场景中渲染任何一种几何图形,还是需要入门笔记一中的知识:Vertex Sha ...
- tensorflow入门笔记(一) tf.app.flags.FLAGS
tf.app.flags.DEFINE_xxx()就是添加命令行的optional argument(可选参数),而tf.app.flags.FLAGS可以从对应的命令行参数取出参数.举例如下: FL ...
- tensorflow学习笔记三:实例数据下载与读取
一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们 ...
- tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构
Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(A ...
- TensorFlow学习笔记之--[tf.app.flags使用方法]
很多时候在运行python代码的时候我们需要从外部定义参数,从而避免每次都需要改动代码.所以一般我们都会使用 argparse 这个库.其实TensorFlow也提供了这个功能,那就是 tf.app. ...
- tensorflow入门笔记(五) name_scope和variable_scope
一.上下文管理器(context manager) 上下文管理器是实现了上下文协议的对象,主要用于资源的获取与释放.上下文协议包括__enter__.__exit__,简单说就是,具备__enter_ ...
随机推荐
- 【九天教您南方cass 9.1】 09 提取坐标的几种方法
同学们大家好,欢迎收看由老王测量上班记出品的cass9.1视频课程 我是本节课主讲老师九天. 我们讲课的教程附件也是共享的,请注意索取测量空间中. [点击索取cass教程]5元立得 (给客服说暗号:“ ...
- 机器学习&深度学习基础(目录)
从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. ...
- UML类图关系大全【转】
UML类图关系大全 1.关联 双向关联:C1-C2:指双方都知道对方的存在,都可以调用对方的公共属性和方法. 在GOF的设计模式书上是这样描述的:虽然在分析阶段这种关系是适用的,但我们觉得它对于描述设 ...
- python3二元Logistics Regression 回归分析(LogisticRegression)
纲要 boss说增加项目平台分析方法: T检验(独立样本T检验).线性回归.二元Logistics回归.因子分析.可靠性分析 根本不懂,一脸懵逼状态,分析部确实有人才,反正我是一脸懵 首先解释什么是二 ...
- CentOS 7.4编译安装Nginx1.10.3+MySQL5.7.16
准备篇 一.防火墙配置 CentOS 7.x默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewalld.se ...
- [Model] ResNet
ResNet引入了残差网络结构(residual network),通过残差网络,可以把网络层弄的很深,据说现在达到了1000多层,最终的网络分类的效果也是非常好 Ref: http://blog.c ...
- asp.net mvc 3.0 知识点整理 ----- (4).asp.net mvc 3 和asp.net mvc 4 对比
asp.net mvc的版本更新很快,每个版本都在前一个版本的基础上,进行性能的优化和功能的完善和提升. 以下,便是我对比了下两个版本,发现最基本的差异.(更新补充中..) 一.关于配置类Global ...
- WCF ChannelFactory<T> WCF Channel and ChannelFactory Caching
https://stackoverflow.com/questions/3200197/creating-wcf-channelfactoryt?rq=1 https://stackoverflow. ...
- java.util.HashMap的简单介绍
1. java.util.HashMap的底层实现是数组+链表. 2. 简介put(key, value)方法的执行过程: 1)通过key值,使用散列算法计算出来一个hash值,用来确定该元素需要存储 ...
- Servlet知识点回顾
一.Servlet生命周期 服务器调用一个Servlet的8个步骤: 1.在服务器启动时,当Servlet被配置好或者被客户首次请求时,由服务器加载servlet,这一步相当于下列代码: Class ...