MapReduce- 数据的排序处理
MapReduce- 数据的排序处理
package com.huhu.day02;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/**
* 6 9
* 3 8
* 4 8
* 1 0
* 3 0
* 8 8
* 6 7
* 第一列升序,第二列降序
* @author huhu_k
*
*/
public class Number implements WritableComparable<Number> {
private int first;
private int second;
// private int third;
public Number() {
super();
}
public Number(int first, int second) {
super();
this.first = first;
this.second = second;
}
public int getFirst() {
return first;
}
public void setFirst(int first) {
this.first = first;
}
public int getSecond() {
return second;
}
public void setSecond(int second) {
this.second = second;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Number other = (Number) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
}
@Override
public String toString() {
return "Number [first=" + first + ", second=" + second + "]";
}
@Override
public void readFields(DataInput in) throws IOException {
this.first = in.readInt();
this.second = in.readInt();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(this.first);
out.writeInt(this.second);
}
@Override
public int compareTo(Number o) {
if (this.first== o.first) {
//第二行数据降序
return o.second - this.second;
}
//第一行升序
return this.first - o.first;
}
}
package com.huhu.day02;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class NumericSorting extends ToolRunner implements Tool {
public static class MyMapper extends Mapper<LongWritable, Text, Number, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] line = value.toString().split(" ");
Number number = null;
if (line.length == 2) {
number = new Number(Integer.parseInt(line[0]), Integer.parseInt(line[1]));
}
context.write(number, NullWritable.get());
}
}
public static class MyReduce extends Reducer<Number, NullWritable, Number, Text> {
@Override
protected void reduce(Number key, Iterable<NullWritable> values, Context context)
throws IOException, InterruptedException {
for (NullWritable n : values) {
context.write(key, new Text("---"));
}
}
}
@Override
public Configuration getConf() {
return new Configuration();
}
@Override
public void setConf(Configuration arg0) {
}
@Override
public int run(String[] other) throws Exception {
Job job = Job.getInstance(getConf(), "NumbericSorting");
job.setJarByClass(NumericSorting.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Number.class);
job.setMapOutputValueClass(NullWritable.class);
job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(Number.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(other[0]));
FileOutputFormat.setOutputPath(job, new Path(other[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] other = new GenericOptionsParser(conf, args).getRemainingArgs();
if (other.length != 2) {
System.out.println("your input args number is fail,you need input <in> and <out>");
System.exit(0);
}
ToolRunner.run(conf, new NumericSorting(), other);
}
}
运行结果:
MapReduce- 数据的排序处理的更多相关文章
- Hadoop学习笔记—11.MapReduce中的排序和分组
一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排 ...
- MapReduce二次排序
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...
- (转)MapReduce二次排序
一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求 ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
- 关于MapReduce二次排序的一点解答
上一篇博客说明了怎么自定义Key,而且用了二次排序的例子来做测试,但没有详细的说明二次排序,这一篇说详细的说明二次排序,为了说明曾经一个思想的误区,特地做了一个3个字段的二次排序来说明.后面称其为“三 ...
- mapreduce 实现数子排序
设计思路: 使用mapreduce的默认排序,按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String ...
- 详细讲解MapReduce二次排序过程
我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...
- MapReduce 二次排序
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...
- Spark 颠覆 MapReduce 保持的排序记录
在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加 ...
- mapreduce数据处理——统计排序
接上篇https://www.cnblogs.com/sengzhao666/p/11850849.html 2.数据处理: ·统计最受欢迎的视频/文章的Top10访问次数 (id) ·按照地市统计最 ...
随机推荐
- 51nod 1405 树的距离之和(dfs)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...
- mysql联合主键自增、主键最大长度小记
前言 一. 联合主键自增问题 今天上午闲来无事翻看了下数据库分类表的设计,看到这样一幕: 当时我好奇的是怎么cateId自增会存在重复值的问题,然后翻看了下主键是由siteId和cateId组成.所以 ...
- 后台返回数据判断是http还是后台本地图片 indexOf
今天的笔记呢,记录一下 其实这个应该后台去判断的,但是因为某种原因,今天我们前台做一下判断 事情是这样的,后台返回我一个url 这个url有的http开头的 也有他后台本地的例如:/img/1.pn ...
- R语言可视化学习笔记之添加p-value和显著性标记--转载
https://www.jianshu.com/p/b7274afff14f?from=timeline #先加载包 library(ggpubr) #加载数据集ToothGrowth data(&q ...
- sql 查询字段是中文/英文/数字 正则表达式
一.包含中文字符 select * from 表名 where 列名 like '%[吖-座]%' 二.包含英文字符 select * from 表名 where 列名 like '%[a-z]%' ...
- [calss*="col-"]匹配类名中包含col-的类名,^以col-开头,$以col-结尾
[class*= col-] 代表包含 col- 的类名 , 例 col-md-4 ,demo-col-2(这个是虚构的)等都可以匹配到. [class^=col-] 代表 以 col- 开头 ...
- vue-cli3+cordova实现app混合开发
一.安装vue-cli3 安装并建新项目 二.进入项目安装cordova npm install -g cordova 下载完之后,输入 cordova -v 查看是否成功安装,出现相应的版本号则成功 ...
- 从flask视角理解angular(二)Blueprint VS Component
Component类似flask app下面的每个blueprint. import 'rxjs/add/operator/switchMap'; import { Component, OnInit ...
- UCS2编码
UCS2就是标准的unicode编码, 它是某国际组织设计的一种文字符号编码表,包括了世界上绝大多数文字和符号,包括中文,每个字符使用2字节编码,因此叫ucs2. 这里有一篇文章对Unicode编码做 ...
- Java定时器的三种实现方式
一.普通thread /** * 普通thread * 这是最常见的,创建一个thread,然后让它在while循环里一直运行着, * 通过sleep方法来达到定时任务的效果.这样可以快速简单的实现, ...