MapReduce- 数据的排序处理

package com.huhu.day02;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.WritableComparable; /**
* 6 9
* 3 8
* 4 8
* 1 0
* 3 0
* 8 8
* 6 7
* 第一列升序,第二列降序
* @author huhu_k
*
*/
public class Number implements WritableComparable<Number> { private int first;
private int second; // private int third;
public Number() {
super();
} public Number(int first, int second) {
super();
this.first = first;
this.second = second;
} public int getFirst() {
return first;
} public void setFirst(int first) {
this.first = first;
} public int getSecond() {
return second;
} public void setSecond(int second) {
this.second = second;
} @Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
} @Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Number other = (Number) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
} @Override
public String toString() {
return "Number [first=" + first + ", second=" + second + "]";
} @Override
public void readFields(DataInput in) throws IOException {
this.first = in.readInt();
this.second = in.readInt();
} @Override
public void write(DataOutput out) throws IOException {
out.writeInt(this.first);
out.writeInt(this.second);
} @Override
public int compareTo(Number o) {
if (this.first== o.first) {
//第二行数据降序
return o.second - this.second;
}
//第一行升序
return this.first - o.first;
} }
package com.huhu.day02;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class NumericSorting extends ToolRunner implements Tool { public static class MyMapper extends Mapper<LongWritable, Text, Number, NullWritable> { @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] line = value.toString().split(" ");
Number number = null;
if (line.length == 2) {
number = new Number(Integer.parseInt(line[0]), Integer.parseInt(line[1]));
}
context.write(number, NullWritable.get());
}
} public static class MyReduce extends Reducer<Number, NullWritable, Number, Text> {
@Override
protected void reduce(Number key, Iterable<NullWritable> values, Context context)
throws IOException, InterruptedException {
for (NullWritable n : values) {
context.write(key, new Text("---"));
}
}
} @Override
public Configuration getConf() {
return new Configuration();
} @Override
public void setConf(Configuration arg0) { } @Override
public int run(String[] other) throws Exception { Job job = Job.getInstance(getConf(), "NumbericSorting");
job.setJarByClass(NumericSorting.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Number.class);
job.setMapOutputValueClass(NullWritable.class); job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(Number.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(other[0]));
FileOutputFormat.setOutputPath(job, new Path(other[1])); return job.waitForCompletion(true) ? 0 : 1;
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] other = new GenericOptionsParser(conf, args).getRemainingArgs();
if (other.length != 2) {
System.out.println("your input args number is fail,you need input <in> and <out>");
System.exit(0);
}
ToolRunner.run(conf, new NumericSorting(), other);
}
}

运行结果:

MapReduce- 数据的排序处理的更多相关文章

  1. Hadoop学习笔记—11.MapReduce中的排序和分组

    一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排 ...

  2. MapReduce二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  3. (转)MapReduce二次排序

    一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求 ...

  4. Hadoop MapReduce 二次排序原理及其应用

    关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...

  5. 关于MapReduce二次排序的一点解答

    上一篇博客说明了怎么自定义Key,而且用了二次排序的例子来做测试,但没有详细的说明二次排序,这一篇说详细的说明二次排序,为了说明曾经一个思想的误区,特地做了一个3个字段的二次排序来说明.后面称其为“三 ...

  6. mapreduce 实现数子排序

    设计思路: 使用mapreduce的默认排序,按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String ...

  7. 详细讲解MapReduce二次排序过程

    我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...

  8. MapReduce 二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  9. Spark 颠覆 MapReduce 保持的排序记录

    在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加 ...

  10. mapreduce数据处理——统计排序

    接上篇https://www.cnblogs.com/sengzhao666/p/11850849.html 2.数据处理: ·统计最受欢迎的视频/文章的Top10访问次数 (id) ·按照地市统计最 ...

随机推荐

  1. 51nod 1405 树的距离之和(dfs)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...

  2. mysql联合主键自增、主键最大长度小记

    前言 一. 联合主键自增问题 今天上午闲来无事翻看了下数据库分类表的设计,看到这样一幕: 当时我好奇的是怎么cateId自增会存在重复值的问题,然后翻看了下主键是由siteId和cateId组成.所以 ...

  3. 后台返回数据判断是http还是后台本地图片 indexOf

    今天的笔记呢,记录一下 其实这个应该后台去判断的,但是因为某种原因,今天我们前台做一下判断 事情是这样的,后台返回我一个url  这个url有的http开头的 也有他后台本地的例如:/img/1.pn ...

  4. R语言可视化学习笔记之添加p-value和显著性标记--转载

    https://www.jianshu.com/p/b7274afff14f?from=timeline #先加载包 library(ggpubr) #加载数据集ToothGrowth data(&q ...

  5. sql 查询字段是中文/英文/数字 正则表达式

    一.包含中文字符 select * from 表名 where 列名 like '%[吖-座]%' 二.包含英文字符 select * from 表名 where 列名 like '%[a-z]%' ...

  6. [calss*="col-"]匹配类名中包含col-的类名,^以col-开头,$以col-结尾

    [class*= col-]  代表包含  col-  的类名 , 例 col-md-4 ,demo-col-2(这个是虚构的)等都可以匹配到. [class^=col-]  代表 以 col- 开头 ...

  7. vue-cli3+cordova实现app混合开发

    一.安装vue-cli3 安装并建新项目 二.进入项目安装cordova npm install -g cordova 下载完之后,输入 cordova -v 查看是否成功安装,出现相应的版本号则成功 ...

  8. 从flask视角理解angular(二)Blueprint VS Component

    Component类似flask app下面的每个blueprint. import 'rxjs/add/operator/switchMap'; import { Component, OnInit ...

  9. UCS2编码

    UCS2就是标准的unicode编码, 它是某国际组织设计的一种文字符号编码表,包括了世界上绝大多数文字和符号,包括中文,每个字符使用2字节编码,因此叫ucs2. 这里有一篇文章对Unicode编码做 ...

  10. Java定时器的三种实现方式

    一.普通thread /** * 普通thread * 这是最常见的,创建一个thread,然后让它在while循环里一直运行着, * 通过sleep方法来达到定时任务的效果.这样可以快速简单的实现, ...