欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - BZOJ1367


题意概括

Description

Input

Output

一个整数R

题解

我被自己坑死了。
左偏树合并:
	if (a==0||b==0)
return a+b;

这样是对的。

然而:

	if (a*b==0)
return a+b;

这样是错的。

原因是:a*b会爆int……


代码

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=1000005;
int n,v[N],root[N],L[N],R[N],top;
int ls[N],rs[N],npl[N],size[N],val[N];
void make_heap(int x,int v){
ls[x]=rs[x]=npl[x]=0,val[x]=v,size[x]=1;
}
int merge(int a,int b){
if (1LL*a*b==0)
return a+b;
if (val[a]<val[b])
swap(a,b);
rs[a]=merge(rs[a],b);
if (npl[rs[a]]>npl[ls[a]])
swap(rs[a],ls[a]);
npl[a]=npl[rs[a]]+1;
size[a]=size[ls[a]]+size[rs[a]]+1;
return a;
}
void pop(int &x){
x=merge(ls[x],rs[x]);
}
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&v[i]),v[i]-=i;
top=0;
for (int i=1;i<=n;i++){
make_heap(root[++top]=i,v[i]);
L[top]=R[top]=i;
while (top>1&&val[root[top-1]]>val[root[top]]){
top--;
root[top]=merge(root[top],root[top+1]);
R[top]=R[top+1];
while (size[root[top]]*2>R[top]-L[top]+2)
pop(root[top]);
}
}
LL ans=0;
for (int i=1;i<=top;i++)
for (int j=L[i];j<=R[i];j++)
ans+=abs(val[root[i]]-v[j]);
printf("%lld",ans);
return 0;
}

  

BZOJ1367 [Baltic2004]sequence 堆 左偏树的更多相关文章

  1. BZOJ1367 [Baltic2004]sequence 【左偏树】

    题目链接 BZOJ1367 题解 又是一道神题,, 我们考虑一些简单的情况: 我们先假设\(b_i\)单调不降,而不是递增 对于递增序列\(\{a_i\}\),显然答案\(\{b_i\}\)满足\(b ...

  2. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  3. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

  4. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

  5. USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆

    题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...

  6. BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...

  7. 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)

    1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...

  8. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  9. 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣

    796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.  在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...

随机推荐

  1. 淘淘商城之spring web mvc架构

    一.什么是springmvc springmvc是spring框架的一个模块,springmvc和spring无需通过中间整合层进行整合: springmvc是一个基于mvc的web框架   二.mv ...

  2. 七、uboot 代码流程分析---C环境建立

    7.1 start.S 修改 在上一节中的流程中,发现初始化的过程并没由设置看门狗,也未进行中断屏蔽 如果看门狗不禁用,会导致系统反复重启,因此需要在初始化的时候禁用看门狗:中断屏蔽保证启动过程中不出 ...

  3. $_SERVER 当前信息

    连接:https://www.cnblogs.com/mafeng/p/5868117.html $_SERVER['HTTP_ACCEPT_LANGUAGE']//浏览器语言 $_SERVER['R ...

  4. Centos7下编译CDH版本hadoop源码支持Snappy压缩

    1 下载snappy包并编译 wget https://github.com/google/snappy/releases/download/1.1.3/snappy-1.1.3.tar.gz tar ...

  5. jquery 操作表单的问题

    下拉框获取选中项的值: $("#ID").find("option:selected").val(); 设置下拉框选中项: $("#ID") ...

  6. 嵌入式Linux驱动笔记(十八)------浅析V4L2框架之ioctl【转】

    转自:https://blog.csdn.net/Guet_Kite/article/details/78574781 权声明:本文为 风筝 博主原创文章,未经博主允许不得转载!!!!!!谢谢合作 h ...

  7. mac安装pyspider报错

    (env)$ pip3 uninstall pycurl (env)$ pip3 install --upgrade pip (env)$ export LDFLAGS=-L/usr/local/op ...

  8. SSH原理与运用:远程登录

    一.什么是SSH? 简单说,SSH是一种网络协议,用于计算机之间的加密登录. 如果一个用户从本地计算机,使用SSH协议登录另一台远程计算机,我们就可以认为,这种登录是安全的,即使被中途截获,密码也不会 ...

  9. Spring的Aspect切面类不能拦截Controller中的方法

    根本原因在于<aop:aspectj-autoproxy />这句话是在spring的配置文件内,还是在springmvc的配置文件内.如果是在spring的配置文件内,则@Control ...

  10. (网络编程)基于tcp(粘包问题) udp协议的套接字通信

    import   socket 1.通信套接字(1人1句)服务端和1个客户端 2.通信循环(1人多句)服务端和1个客户端 3.通信循环(多人(串行)多句)多个客户端(服务端服务死:1个客户端---&g ...