康托展开

简介:对于给定的一个排列,求它是第几个,比如54321是n=5时的第120个。(对于不是1~n的排列可以离散化理解)

做法: ans=a[n]*(n-1)!+a[n-1]*(n-2)!+~~~~a[1]*0!.(a[n]表示在给定的排列中,还没出现的,而且比当前值小的数的个数)

如果说对于一个数学定理你会熟练运用,也许已经足够了,但日后总感觉少点什么,好像做了亏心事一般,因为你没有底气去用它,因为你不知道它为什么是对的,所以证明是第一步。

1.证明:因为是按字典序排序,对于第x个位置数值是a,比它小的有的y个,当前位置是1~y中的任意一个,对剩下位置进行全排列也比当前位置是a小,然后累加就是比它小的数的个数,然后加1就是排列p是第几个,证毕。

康托逆展开

简介:给定它是第几个,求这个排列,比如求n=5时的第120个是54321。(对于不是1~n的排列可以离散化理解)。

做法:就举上面那个例子吧。

120先-1,即120-1=119

119/4!==4.......23  比它小的(还没出现)有4个,故为5

23/3!==3....5   比它小的(还没出现)有3个,故为4

5/2!==2....1   比它小的(还没出现)有2个,故为3

1/1!==1....0   比它小的(还没出现)有1个,故为0

0/0!==0....0   比它小的(还没出现)有0个,故为1

故为54321

康托展开&&康托逆展开的更多相关文章

  1. HDU 1027 Ignatius and the Princess II(康托逆展开)

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  2. 康托展开&康托逆展开 的写法

    康托展开 康托展开解决的是当前序列在全排序的名次的问题. 例如有五个数字组成的数列:1,2,3,4,5 那么1,2,3,4,5就是全排列的第0个[注意从0开始计数] 1,2,3,5,4就是第1个 1, ...

  3. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  4. 康托展开&逆展开算法笔记

    康托展开(有关全排列) 康托展开:已知一个排列,求这个排列在全排列中是第几个 康托展开逆运算:已知在全排列中排第几,求这个排列 定义: X=an(n-1)!+an-1(n-2)!+...+ai(i-1 ...

  5. 【数学】康托展开 && 康托逆展开

    (7.15)康托展开,就是把全排列转化为唯一对应自然数的算法.它可以建立1 - n的全排列与[1, n!]之间的自然数的双向映射. 1.康托展开: 尽管我并不清楚康托展开的原理何在,这个算法的过程还是 ...

  6. 康托展开+逆展开(Cantor expension)详解+优化

    康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一 ...

  7. 康托展开与逆康托展开模板(O(n^2)/O(nlogn))

    O(n2)方法: namespace Cantor { ; int fac[N]; void init() { fac[]=; ; i<N; ++i)fac[i]=fac[i-]*i; } in ...

  8. lightoj1060【康托逆展开】

    可以先看些资料:http://blog.csdn.net/keyboarderqq/article/details/53388936 参考谷巨巨:http://blog.csdn.net/azx736 ...

  9. 康托(Cantor)展开

    直接进入正题. 康托展开 Description 现在有"ABCDEFGHIJ”10个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的? Input ...

随机推荐

  1. tr 设置margin、padding无效

    tr.td设置margin 无效 tr 设置padding无效.td设置padding有效

  2. IMU 预积分推导

    给 StereoDSO 加 IMU,想直接用 OKVIS 的代码,但是有点看不懂.知乎上郑帆写的文章<四元数矩阵与 so(3) 左右雅可比>提到 OKVIS 的预积分是使用四元数,而预积分 ...

  3. 2018-2019-2 网络对抗技术 20165230 Exp6 信息搜集与漏洞扫描

    目录 1.实验内容 2.实验过程 任务一:各种搜索技巧的应用 通过搜索引擎进行信息搜集 搜索网址目录结构 使用IP路由侦查工具traceroute 搜索特定类型的文件 任务二:DNS IP注册信息的查 ...

  4. Web项目Shiro总结及源码(十六)

    shiro过虑器 过滤器简称 对应的java类 anon org.apache.shiro.web.filter.authc.AnonymousFilter authc org.apache.shir ...

  5. git获取内核源码的方法

    [转]http://www.360doc.com/content/17/0410/16/23107068_644444795.shtml 1. 前言 本文主要讲述ubuntu下通过git下载linux ...

  6. HTML学习笔记09-列表

    HTML支持无序,有序,自定义列表 列表项内部可以使用段落.换行符.图片.连接.以及其他列表等 无序列表 无序列表使用粗体圆点(典型的小黑圆圈)进行标记,列表始于<ul>标签,列表项使用& ...

  7. java中不同类型的数值占用字节数

    在Java中一共有8种基本数据类型,其中有4种整型,2种浮点类型,1种用于表示Unicode编码的字符单元的字符类型和1种用于表示真值的boolean类型.(一个字节等于8个bit) 1.整型 类型 ...

  8. linux下ssh远程连接工具SecureCRT和xshell编码设置

    默认的编码有时候显示乱码,需要切换到utf-8 xshell的设置 多个会话窗口执行同样命令 中文界面:

  9. mysql忘记root密码的处理方式

    1.停用mysql服务 service mysqld stop 2.修改my.cnf    利用vim命令打开mysql配置文件my.cnf 添加skip-grant-tables,添加完成后,执行w ...

  10. wpf 自定义属性的默认值

    public int MaxSelectCount { get { return (int)GetValue(MaxSelectCountProperty); } set { SetValue(Max ...