Problem

一个n*m块砖的建筑,一共k天,每天风从两边吹,吹掉砖的概率为p,反之为1-p,求最终建筑没有倒塌的可能性(上层与下层有交集且每一层都有砖)

Solution

首先,我们可以预处理出pl[]和pr[]数组,表示k天后左右两边风吹到的位置的可能性

然后我们可以枚举层数,当前这一层的左右端点和上一层的左右端点,如果有公共部分则转移

这样的时间复杂度是O(n^5),显然我们可以用前缀和来优化:

引入f[i][r]+=dp[i][l][r](l <= r),再用一个sumr数组维护f数组的前缀和(suml数组是和sumr对称的)

那么dp[i][l][r]就等于总概率减去上一层区间在这个区间左边的概率和上一层区间在这个区间右边的概率(不相交的概率)

这样时间复杂度就降为了O(n2),我们再考虑优化使得时间复杂度降为O(n2):

我们再把dp降为两维,表示第i层最右边是j的概率

dp[i][j]=pl[l]pr[r](sumr[i-1][m] - suml[i-1][r+1] - sumr[i-1][l-1])

我们发现当l改变时,dp[i][j]改变的是可以再用前缀和维护的

于是时间复杂度变成了O(n^2)

Notice

前缀和预处理较多

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, mo = INF + 7, N = 1505, K = 100005;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
ll p1[K], p2[K];
ll dp[N][N], suml[N][N], sumr[N][N], sum1[N], sum2[N], tt[K], pl[N], pr[N];
ll quickmo(ll x, int y)
{
ll ans = 1;
while (y)
{
if (y & 1) ans = ans * x % mo;
x = x * x % mo;
y /= 2;
}
return ans;
}
ll C(int n, int m)
{
return tt[m] * quickmo(tt[m - n], mo - 2) % mo * quickmo(tt[n], mo - 2) % mo;
}
int sqz()
{
int n = read(), m = read();
ll a = read(), b = read();
int k = read();
p1[0] = 1, p1[1] = a * quickmo(b, mo - 2) % mo;
p2[0] = 1, p2[1] = (b - a) * quickmo(b, mo - 2) % mo;
rep(i, 2, k) p1[i] = p1[i - 1] * p1[1] % mo, p2[i] = p2[i - 1] * p2[1] % mo;
tt[0] = 1;
rep(i, 1, k) tt[i] = tt[i - 1] * i % mo;
rep(i, 0, m - 1)
{
if (i > k) pl[i + 1] = 0;
else pl[i + 1] = C(i, k) * p1[i] % mo * p2[k - i] % mo;
pr[m - i] = pl[i + 1];
}
rep(i, 1, m) sum1[i] = (sum1[i - 1] + pl[i]) % mo;
sumr[0][m] = 1;
rep(i, 1, n)
{
rep(j, 1, m) sum2[j] = (sum2[j - 1] + pl[j] * sumr[i - 1][j - 1]) % mo;
rep(j, 1, m) dp[i][j] = (pr[j] * (sumr[i - 1][m] - suml[i - 1][j + 1]) % mo * sum1[j] % mo - pr[j] * sum2[j] % mo + mo) % mo;
rep(j, 1, m) suml[i][m - j + 1] = sumr[i][j] = (sumr[i][j - 1] + dp[i][j]) % mo;
}
printf("%lld\n", (sumr[n][m] + mo) % mo);
}

[Codeforces708E]Student's Camp的更多相关文章

  1. [CodeForces-708E]Student's Camp

    题目大意: 一个n*m的墙,被吹k天风,每块靠边的砖都有p的概率被吹掉. 如果上下两行没有直接相连的地方,我们则认为这一堵墙已经倒塌. 问最后墙不倒塌的概率(模意义). 思路: 动态规划. 用f[i] ...

  2. 【CF708E】Student's Camp 组合数+动态规划

    [CF708E]Student's Camp 题意:有一个n*m的网格,每一秒钟,所有左面没有格子的格子会有p的概率消失,右面没有格子的格子也会有p的概率消失,问你t秒钟后,整个网格的上边界和下边界仍 ...

  3. Student's Camp CodeForces - 708E (dp,前缀和优化)

    大意: $n$行$m$列砖, 白天左侧边界每块砖有$p$概率被摧毁, 晚上右侧边界有$p$概率被摧毁, 求最后上下边界连通的概率. 记${dp}_{i,l,r}$为遍历到第$t$行时, 第$t$行砖块 ...

  4. CF708E Student's Camp

    麻麻我会做*3100的计数了,我出息了 考虑朴素DP我们怎么做呢. 设\(f_{i,l,r}\)为第\(i\)层选择\(l,r\)的依旧不倒的概率. \(q(l,r)\)表示经历了\(k\)天后,存活 ...

  5. Codeforces 708E - Student's Camp(前缀和优化 dp)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙 *3100,%%% 首先容易注意到 \(\forall i\in[1,m]\),第 \(i\) 行剩余的砖块一定构成一个区间,设其为 ...

  6. Codeforces Round #588 (Div. 2) D. Marcin and Training Camp(思维)

    链接: https://codeforces.com/contest/1230/problem/D 题意: Marcin is a coach in his university. There are ...

  7. java.io.NotSerializableException: test.io.file.Student

    java.io.NotSerializableException: test.io.file.Student    at java.io.ObjectOutputStream.writeObject0 ...

  8. 使用java反射机制编写Student类并保存

    定义Student类 package org; public class Student { private String _name = null; ; ; public Student() { } ...

  9. 参加MVP OpenDay 和2015 MVP Community Camp社区大课堂

    微软MVP Openday 1月30日在北京召开,到时全国上百位 MVP 专家将齐聚北京.当然还有亚太的其他国家地区的MVP 也会来北京,1月31日微软 MVP 项目组主办的年度微软技术社区分享大会- ...

随机推荐

  1. SQL SERVER 设置区别大小写

    表格中字段设置大小写: --查询时修改 select * from info where name collate Chinese_PRC_CS_AS_WS = 'lily'; --或者修改表对大小写 ...

  2. sql 聚合函数和group by 联合使用

    原文 很多时候单独使用聚合函数的时候觉得很容易,求个平均值,求和,求个数等,但是和分组一起用就有点混淆了,好记性不如烂笔头,所以就记下来以后看看. 常用聚合函数罗列 1 AVG() - 返回平均值 C ...

  3. C#打印格式

    一:C#代码直接打印pdf文件(打印质保书pdf文件) 引用: 代码注释很详细了. private void btn_pdf_Click(object sender, RoutedEventArgs ...

  4. English trip EM2-PE-1B Teacher:Patirck

    PE = 演讲课 课上内容(Lesson) How are you today?  你今天怎么样? What is your name?  你的名字叫什么? What do you come from ...

  5. every day a practice —— morning(2)

    Two years at sea have fostered a close relationship between the two fellow sailors as they cross the ...

  6. android -------- ConstraintLayout Guideline和Barrier(四)

    前面的文章 ConstraintLayout 介绍 (一) ConstraintLayout约束属性 (二) ConstraintLayout 宽高比和偏移量比(三) 此博文主要讲解:Guidelin ...

  7. git部署

    1. 自动部署原理 先讲实现方法和原理.Git服务和仓库都是在服务器上的,服务器上的Web目录和本地都有完整的代码.Git有个叫hook的机制,可以在代码更新时执行回调(执行一段shell).一般执行 ...

  8. 配置samba 服务器 共享Linux目录

    配置samba 服务器 共享Linux目录 1.安装: yum install -y samba* 2.修改配置文件 vim /etc/samba/smb.conf [web] path = /usr ...

  9. 【Oracle】【7】去掉字符串中的空格/字符

    SELECT TRIM(' 去除前后空格 ') FROM DUAL; SELECT REPLACE(' 去除 任意位置的空格 ', ' ', '') FROM DUAL; 扩展: 1,both, tr ...

  10. python-flask-SQLAlchemy-Utils组件

    SQLAlchemy-Utils,提供choice功能 定义: # pip3 install sqlalchemy-utils from sqlalchemy_utils import ChoiceT ...