奇怪吸引子---LorenaMod1
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=-a*i + j*j - k*k + a*c
v=i*(j - b*k) + d
w=k+i*(b*j + k)
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=0.100000
b=4.000000
c=14.000000
d=0.080000
i=1.000000
j=1.000000
k=1.000000
t=0.001000
混沌图像:



奇怪吸引子---LorenaMod1的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- 面向对象编程其实很简单——Python 面向对象(初级篇)
出处:http://www.cnblogs.com/wupeiqi/ 概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函 ...
- 在 laravel 的 DB::transaction 中,为外部变量赋值
例如,我想在 laravel 的事务中,对某个外部变量赋值,然后在后续的逻辑中判断该变量的属性 $user = null; // init DB::transaction(function() use ...
- hdu 1542 线段树+扫描线 学习
学习扫描线ing... 玄学的东西... 扫描线其实就是用一条假想的线去扫描一堆矩形,借以求出他们的面积或周长(这一篇是面积,下一篇是周长) 扫描线求面积的主要思想就是对一个二维的矩形的某一维上建立一 ...
- C#4.0特性
C# 4.0的主要主题是动态编程.对象的意义变得越来越“动态”,它们的结构和行为无法通过静态类型来捕获,或者至少编译器在编译程序时无法得知对象的结构和行为. a. 来自动态编程语言——如Python或 ...
- Spring之hello world(Spring入门)
spring各个版本中: 在3.0以下的版本,源码有spring中相关的所有包[spring功能 + 依赖包] 如2.5版本: 在3.0以上的版本,源码中只有spring的核心功能包[没有依赖包] ( ...
- js的"|"
3|4 转换为二进制之后011|100 相加得到111=7 4|4 转换为二进制之后100 |100 相加得到1000=8 8|3 转换为二进制之后1000 |011 相加得到1011=11 以 ...
- day8--socket网络编程进阶
socket:socket就是实现服务器和客户端数据的交换,服务器端接收并发送数据,客户端发送并接收数据,并且需要注意的是,在python3中,socket值接收字节.因为客户端在发送连接给服务器的时 ...
- PhpStorm 中切换PHP版本
PhpStorm 中默认的 PHP 版本是 PHP 5.4 ,PhpStorm 会以该版本对编辑器中的PHP文件进行自动校验.EX:PHP文件中,使用了 PHP 5.4 版本以上的新特性,由于 Php ...
- BZOJ1090 [SCOI2003]字符串折叠 区间动态规划 字符串
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1090 题意概括 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S 2. X(S)是X ...
- 【Java】 剑指offer(57-2) 为s的连续正数序列
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 输入一个正数s,打印出所有和为s的连续正数序列(至少含有两个数 ...