奇怪吸引子---LorenaMod1
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=-a*i + j*j - k*k + a*c
v=i*(j - b*k) + d
w=k+i*(b*j + k)
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=0.100000
b=4.000000
c=14.000000
d=0.080000
i=1.000000
j=1.000000
k=1.000000
t=0.001000
混沌图像:



奇怪吸引子---LorenaMod1的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- vue渲染时对象里面的对象的属性提示undefined,但渲染成功
场景: 从后台请求的数据结构如下: 我的list是对象,而comment又是list里的对象,渲染成功了,却报如下错: 解决办法: 添加一个:v-if
- spoj227 树状数组插队序列问题
插队问题和线段树解决的方式一样,每个结点维护值的信息是该节点之前的空位有多少,然后从后往前插点即可 注意该题要求输出的是从左往右输出每个士兵的等级,即问士兵最后排在第几个位置 /* 树状数组维护前i个 ...
- collectd+influxDB+Grafana搭建性能监控平台
网上查看了很多关于环境搭建的文章,都比较久远了很多安装包源都不可用了,今天收集了很多资料组合尝试使用新版本来搭建,故在此记录. 采集数据(collectd)-> 存储数据(influxdb) - ...
- Javascript中类的实现机制(四)
一: 理解类的实现机制 在JavaScript中可以使用function关键字来定义一个“类”,如何为类添加成员.在函数内通过this指针引用的变量或者方法都会成为类的成员,例如:function ...
- python yield,到这个层次,才能叫深入哈
http://python.jobbole.com/88677/?utm_source=blog.jobbole.com&utm_medium=relatedPosts ~~~~~~~~~~~ ...
- day6作业--游戏人生完善
本节作业: 熟练使用类和模块,写一个交互性强.有冲突的程序. 一.作业目的 1.规范程序写法,要按照模块来规范书写: 2.类的使用,文件之间的调用练习: 3.思路的开阔,自己编写冲突,实现调用 ...
- Unity 之 自定义消息提示框
简单版: http://blog.csdn.net/caoshuangxiaodouya/article/details/46550655 复杂版: http://www.tuicool.com/ar ...
- mybatis DATE_FORMAT 格式化时间输出
参考:http://www.cnblogs.com/yangy608/p/3950095.html 一.在oracle中,当想把字符串为‘2011-09-20 08:30:45’的格式转化为日期格式, ...
- python获取公网ip,本地ip及所在国家城市等相关信息收藏
python获取公网ip的几种方式 from urllib2 import urlopen my_ip = urlopen('http://ip.42.pl/raw').read() ...
- POJ 3903 Stock Exchange 【最长上升子序列】模板题
<题目链接> 题目大意: 裸的DP最长上升子序列,给你一段序列,求其最长上升子序列的长度,n^2的dp朴素算法过不了,这里用的是nlogn的算法,用了二分查找. O(nlogn)算法 #i ...