题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256

给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。

 
Input
输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)
Output
输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input示例
2 3
Output示例
2

题解:扩展GCD
 #include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
#include <queue>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define INF 0x3f3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
bool cmp(int x,int y)
{
return x>y;
}
const int N=;
const int mod=1e9+;
/*
* 扩展欧几里得法(求ax + by = gcd)
*/
// 返回d = gcd(a, b);和对应于等式ax + by = d中的x、y
ll extendGcd(ll a,ll b,ll &x,ll &y)
{
if (a == && b == ){
return -; // 无最大公约数
}
if (b == ){
x = ;
y = ;
return a;
}
ll d = extendGcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
// 求逆元 ax = 1(mod n)
ll modReverse(ll a, ll n)
{
ll x, y;
ll d = extendGcd(a, n, x, y);
if (d == ){
return (x % n + n) % n;
}
else{
return -; // 无逆元
}
}
int main()
{
ll M, N;
while (cin >> M >> N){
cout << modReverse(M, N) << endl;
}
return ;
}

51Nod 1256 乘法逆元的更多相关文章

  1. 51Nod 1256 乘法逆元 Label:exgcd

    1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K ...

  2. (拓展欧几里得)51NOD 1256 乘法逆元

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的.   输入 输入2个数M, N中间用空 ...

  3. [51nod 1256] 乘法逆元 - exgcd

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Solution 用 EXGCD 求 ...

  4. 51Nod 1256 乘法逆元 扩展欧几里得

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = ...

  5. 51 Nod 1256 乘法逆元(数论:拓展欧几里得)

    1256 乘法逆元  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...

  6. 51nod 125乘法逆元 (扩展欧几里得)

    给出2个数M和N(M < N),且M与N互质.找出一个数K满足0 < K < N且K * M % N = 1,假设有多个满足条件的.输出最小的. Input 输入2个数M, N中间用 ...

  7. 51nod1256乘法逆元

    1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < ...

  8. 51nod--1256 乘法逆元 (扩展欧几里得)

    题目: 1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < ...

  9. 关于逆元的概念、用途和可行性的思考(附51nod 1013 和 51nod 1256)

    [逆元的概念] 逆元和单位元这个概念在群中的解释是:  逆元是指数学领域群G中任意一个元素a,都在G中有唯一的逆元a',具有性质a×a'=a'×a=e,其中e为该群的单位元. 群的概念是:  如果独异 ...

随机推荐

  1. vue监听滚动事件 实现某元素吸顶或者固定位置显示

    https://blog.csdn.net/wang1006008051/article/details/78003974 1.监听滚动事件 利用VUE写一个在控制台打印当前的scrollTop, 首 ...

  2. Lua搜索特殊字符

    local newtext = "." local index1 = string.find(newtext,"%.") 在这里,"."是通 ...

  3. left join不同写法导致数据差异

    select m.*, p.specification, p.sales_price, p.promotion_price from product_detail p left join PRODUC ...

  4. python 内置方法expandtabs 把字符串格式化成列表输出

    #!/usr/bin/python3 # -*- coding: utf-8 -*- test = "username\tmail\tage\nzhangsen\tzhangsen@qq.c ...

  5. [LeetCode] 69. Sqrt(x)_Easy tag: Binary Search

    Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a no ...

  6. leetcode 22括号生成

    非常好的一道题.一开始的思想是这样的,先把n对括号按照某一顺序生成一个string,然后用全排列算法生成所有可能,然后利用stack写一段判断括号是否匹配的字符串,匹配的假如结果中.不过会超时.因为全 ...

  7. linux 编译 'aclocal-1.14' is missing on your system

    centos编译出现:类似情况: $tar -xvf libpcap-1.0.0.tar.gz      $cd libpcap-1.0.0.tar.gz      $./configure      ...

  8. WebService/WCF/WebAPI 之间的区别

    Web Service 1.数据的格式基于SOAP协议 2.数据的传输只支持HTTP协议 3.它只能部署在IIS上 WCF 1.数据的格式基于SOAP协议 2.数据的传输支持HTTP,HTTPS,TC ...

  9. matlab 字符串处理函数

    https://www.cnblogs.com/emanlee/archive/2012/09/13/2683912.html % 字符串处理 a='  a';b='b  b';c='cccc';m= ...

  10. js中var a=new Object()和var a={}有什么区别吗?

    应该是没有区别的,两者都是生成一个默认的Object对象.js和其它语言一样,一切对象的基类都是Object,所以,new Object()和简易的{}是同样的空对象,就是默认的对象.本来我以为{}应 ...