pandas的聚合操作: groupyby与agg
pandas提供基于行和列的聚合操作,groupby可理解为是基于行的,agg则是基于列的
从实现上看,groupby返回的是一个DataFrameGroupBy结构,这个结构必须调用聚合函数(如sum)之后,才会得到结构为Series的数据结果。
而agg是DataFrame的直接方法,返回的也是一个DataFrame。当然,很多功能用sum、mean等等也可以实现。但是agg更加简洁, 而且传给它的函数可以是字符串,也可以自定义,参数是column对应的子DataFrame
一、pandas.group_by
首先来看一下案例的数据格式,使用head函数调用DataFrame的前8条记录,这里一共4个属性
column_map.head(8)
work_order 表示工序, work_station表示工位,rang_low, range_high 表示对应记录的上下限,现在使用groupby统计每个工序工位下面各有多少条记录
column_map.groupby(['work_order','work_station'])
我们会发现输出的是一个GroupBy类,并非我们想要的结果
<pandas.core.groupby.DataFrameGroupBy object at 0x111242630>
还需要加上一个聚合函数,比如
wo_ws_group = column_map.groupby(['work_order','work_station'])
wo_ws_group.size()
我们就可以得到

新出现的列对应着每个工序工位下面有多少条记录
但是我们可以发现它的格式已经和我们平时使用的DataFrame不太一样了,我们可以使用下面的命令解决
wo_ws_group.size().reset_index()

想要查询具体每一个记录,可以使用loc命令


使用get_group可以查询具体每一个分组下面的所有记录
wo_ws_group.get_group(('0','11'))
因为比较多就显示全部了,使用head,显示前几条记录
wo_ws_group.get_group(('0','11')).head(8)

我们还可以使用idxmin(),idxmax()函数,获得每一个分组下面所有记录中数值最大最小的index
wo_ws_group['range_low'].idxmin()



对于分组结果的每一列还可以使用apply,进行一些函数的二次处理,如
wo_ws_group['work_order'].apply(lambda x:2*x).head(8)

由于这里的0是字符串类型,所以2*以后都变成了2个0
二、pandas.agg
agg的使用比groupby还要简介一些,我们现自己创建一个DataFrame作为例子
data = pd.DataFrame([[2,11],[1,23],[5,11],[1.3,44],[5,111]],columns = ['price','quantity'],dtype = float)

使用agg统计每一列的求和与平均值
data.agg({'price':['sum','mean'],'quantity':['sum']})

如果需要自定义一些函数的 话可以使用lambda函数


pandas的聚合操作: groupyby与agg的更多相关文章
- 数据分析入门——pandas之DataFrame多层/多级索引与聚合操作
一.行多层索引 1.隐式创建 在构造函数中给index.colunms等多个数组实现(datafarme与series都可以) df的多级索引创建方法类似: 2.显式创建pd.MultiIndex 其 ...
- Python Pandas分组聚合
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数. apply(),applymap()和map() apply()和applymap()是DataFrame ...
- Pandas 分组聚合
# 导入相关库 import numpy as np import pandas as pd 创建数据 index = pd.Index(data=["Tom", "Bo ...
- MongoTemplate聚合操作
Aggregation简单来说,就是提供数据统计.分析.分类的方法,这与mapreduce有异曲同工之处,只不过mongodb做了更多的封装与优化,让数据操作更加便捷和易用.Aggregation操作 ...
- Pandas的高级操作
pandas数据处理 1. 删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True keep参数: ...
- Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作
8. Dataset (DataFrame) 的基础操作 8.1. 有类型操作 8.2. 无类型转换 8.5. Column 对象 9. 缺失值处理 10. 聚合 11. 连接 8. Dataset ...
- 数据分析05 /pandas的高级操作
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...
- 《Entity Framework 6 Recipes》中文翻译系列 (27) ------ 第五章 加载实体和导航属性之关联实体过滤、排序、执行聚合操作
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 5-9 关联实体过滤和排序 问题 你有一实体的实例,你想加载应用了过滤和排序的相关 ...
- MongoDB 聚合操作
在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce.Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复 ...
随机推荐
- js向一个数组中插入元素的几个方法-性能比较
向一个数组中插入元素是平时很常见的一件事情.你可以使用push在数组尾部插入元素,可以用unshift在数组头部插入元素,也可以用splice在数组中间插入元素. 但是这些已知的方法,并不意味着没有更 ...
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
- 二十一、MVC的WEB框架(Spring MVC)
一.基于注解方式配置 1.首先是修改IndexContoller控制器类 1.1.在类前面加上@Controller:表示这个类是一个控制器 1.2.在方法handleRequest前面加上@Requ ...
- java.sql.SQLException: Parameter index out of range (3 > number of parameters, which is 2).
java.sql.SQLException: Parameter index out of range (3 > number of parameters, which is 2). java. ...
- easyUI的form表单重复提交处理
1. 问题 生产环境出现过新增用户提交, 入库两条重复数据的情况; 但是我查看代码, 页面做了校验, 后台插入数据也做了校验; 出现这种几率的事件的非常小的, 但是还是会碰到, 客户会对我们的产品产 ...
- InnoDB行记录格式(compact)、InnoDB数据页结构
1. compact 行记录格式: 变长字段长度列表,null标志位,记录头信息,列1数据,列2数据 …… 记录头信息中包含许多信息,只列举一部分: 名称 大小 描述 deleted_flag 1bi ...
- [转]perftools查看堆外内存并解决hbase内存溢出
最近线上运行的hbase发现分配了16g内存,但是实际使用了22g,堆外内存达到6g.感觉非常诡异.堆外内存用一般的工具很难查看,可以通过google-perftools来跟踪: http://cod ...
- mysql索引简单分析
索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将对整个表进 ...
- 使用python将excel数据导入数据库
使用python将excel数据导入数据库 因为需要对数据处理,将excel数据导入到数据库,记录一下过程. 使用到的库:xlrd 和 pymysql (如果需要写到excel可以使用xlwt) 直接 ...
- 批量生成QRcode
本想在excel批量生成GUID,并生成二维码. //Excel生成guid,uuid 格式:600d65bc-948a---fd8dfeebb1cd =LOWER(CONCATENATE(DEC2H ...