1. Alternating Least Square

ALS(Alternating Least Square),交替最小二乘法。在机器学习中,特指使用最小二乘法的一种协同推荐算法。如下图所示,u表示用户,v表示商品,用户给商品打分,但是并不是每一个用户都会给每一种商品打分。比如用户u6就没有给商品v3打分,需要我们推断出来,这就是机器学习的任务。

由于并不是每个用户给每种商品都打了分,可以假设ALS矩阵是低秩的,即一个m*n的矩阵,是由m*k和k*n两个矩阵相乘得到的,其中k<<m,n。

Am×n=Um×k×Vk×n

这种假设是合理的,因为用户和商品都包含了一些低维度的隐藏特征,比如我们只要知道某个人喜欢碳酸饮料,就可以推断出他喜欢百世可乐、可口可乐、芬达,而不需要明确指出他喜欢这三种饮料。这里的碳酸饮料就相当于一个隐藏特征。上面的公式中,Um×k表示用户对隐藏特征的偏好,Vk×n表示产品包含隐藏特征的程度。机器学习的任务就是求出Um×k和Vk×n。可知uiTvj是用户i对商品j的偏好,使用Frobenius范数来量化重构U和V产生的误差。由于矩阵中很多地方都是空白的,即用户没有对商品打分,对于这种情况我们就不用计算未知元了,只计算观察到的(用户,商品)集合R。

这样就将协同推荐问题转换成了一个优化问题。目标函数中U和V相互耦合,这就需要使用交替二乘算法。即先假设U的初始值U(0),这样就将问题转化成了一个最小二乘问题,可以根据U(0)可以计算出V(0),再根据V(0)计算出U(1),这样迭代下去,直到迭代了一定的次数,或者收敛为止。虽然不能保证收敛的全局最优解,但是影响不大。

2. MLlib的ALS实现

MLlib的ALS采用了数据分区结构,即将U分解成u1,u2,u3,...um,V分解成v1,v2,v3,...vn,相关的u和v存放在同一个分区,从而减少分区间数据交换的成本。比如通过U计算V时,存储u的分区是P1,P2...,存储v的分区是Q1,Q2...,需要将不同的u发送给不同的Q,存放这个关系的块称作OutBlock;在P中,计算v时需要哪些u,存放这个关系的块称作InBlock。

比如R中有a12,a13,a15,u1存放在P1,v2,v3存放在Q2,v5存放在Q3,则需要将P1中的u1发送给Q2和Q3,这个信息存储在OutBlock;R中有a12,a32,因此计算v2需要u1和u3,这个信息存储在InBlock。

直接上代码:

import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating /**
* Created by Administrator on 2017/7/19.
*/
object ALSTest01 { def main(args:Array[String]) ={
// 设置运行环境
val conf = new SparkConf().setAppName("ALS 01")
.setMaster("spark://master:7077").setJars(Seq("E:\\Intellij\\Projects\\MachineLearning\\MachineLearning.jar"))
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN) // 读取样本数据并解析
val dataRDD = sc.textFile("hdfs://master:9000/ml/data/test.data")
val ratingRDD = dataRDD.map(_.split(',') match {
case Array(user, item, rate) =>
Rating(user.toInt, item.toInt, rate.toDouble)
}) // 拆分成训练集和测试集
val dataParts = ratingRDD.randomSplit(Array(0.8, 0.2))
val trainingRDD = dataParts(0)
val testRDD = dataParts(1) // 建立ALS交替最小二乘算法模型并训练
val rank = 10
val numIterations = 10
val alsModel = ALS.train(trainingRDD, rank, numIterations, 0.01) // 预测
val user_product = trainingRDD.map {
case Rating(user, product, rate) =>
(user, product)
}
val predictions =
alsModel.predict(user_product).map {
case Rating(user, product, rate) =>
((user, product), rate)
} val ratesAndPredictions = trainingRDD.map {
case Rating(user, product, rate) =>
((user, product), rate)
}.join(predictions) val MSE = ratesAndPredictions.map {
case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean() println("Mean Squared Error = " + MSE) println("User" + "\t" + "Products" + "\t" + "Rate" + "\t" + "Prediction")
ratesAndPredictions.collect.foreach(
rating => {
println(rating._1._1 + "\t" + rating._1._2 + "\t" + rating._2._1 + "\t" + rating._2._2)
}
) } }

其中ALS.train()函数的4个参数分别是训练用的数据集,特征数量,迭代次数,和正则因子。

运行结果:

可见,预测结果还是非常准确的。

Spark机器学习(10):ALS交替最小二乘算法的更多相关文章

  1. Spark机器学习(11):协同过滤算法

    协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...

  2. Spark机器学习(2):逻辑回归算法

    逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...

  3. 掌握Spark机器学习库-07-线性回归算法概述

    1)简介 自变量,因变量,线性关系,相关系数,一元线性关系,多元线性关系(平面,超平面) 2)使用线性回归算法的前提 3)应用例子 沸点与气压 浮力与表面积

  4. 【Spark机器学习速成宝典】推荐引擎——协同过滤

    目录 推荐模型的分类 ALS交替最小二乘算法:显式矩阵分解 Spark Python代码:显式矩阵分解 ALS交替最小二乘算法:隐式矩阵分解 Spark Python代码:隐式矩阵分解 推荐模型的分类 ...

  5. 交替最小二乘ALS

    https://www.cnblogs.com/hxsyl/p/5032691.html http://www.cnblogs.com/skyEva/p/5570098.html 1. 基础回顾 矩阵 ...

  6. 【转载】协同过滤 & Spark机器学习实战

    因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:h ...

  7. Spark机器学习解析下集

    上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分 ...

  8. spark 机器学习 ALS原理(一)

    1.线性回归模型线性回归是统计学中最常用的算法,当你想表示两个变量间的数学关系时,就可以用线性回归.当你使用它时,你首先假设输出变量(相应变量.因变量.标签)和预测变量(自变量.解释变量.特征)之间存 ...

  9. Spark机器学习之协同过滤算法

    Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...

随机推荐

  1. python 全栈开发,Day15(递归函数,二分查找法)

    一.递归函数 江湖上流传这这样一句话叫做:人理解循环,神理解递归.所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛. 递归函数:在一个函数里执行再调用这个函数本身 ...

  2. python 全栈开发,Day1(python介绍,变量,if,while)

    python基础一 一,Python介绍 python的出生与应用 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为 ...

  3. 配置CenOS网络,并用Xshell链接。

    首先输入 cd /etc/sysconf ig/network-scripts/ 然后回车 输入ls 然后回车 输入 vi ifcfg-eth0  然后回车 按下esc键,然先后按下U,I键把光标用键 ...

  4. 关于asp.net mvc中的httpModules 与 httpHandler

    ASP.NET对请求处理的过程: 当请求一个*.aspx文件的时候,这个请求会被inetinfo.exe进程截获,它判断文件的后缀(aspx)之后,将这个请求转交给ASPNET_ISAPI.dll,A ...

  5. .NetCore下使用IdentityServer4 & JwtBearer认证授权在CentOS Docker容器中运行遇到的坑及填坑

    今天我把WebAPI部署到CentOS Docker容器中运行,发现原有在Windows下允许的JWTBearer配置出现了问题 在Window下我一直使用这个配置,没有问题 services.Add ...

  6. HDU 4763 求最大长度的串A,使得S满足APAQA

    给一个串,让你找一个子串,形如EAEBE,就是一个串在开头结尾中间各出现一次,问这个E最长是多少 Sample Input5xyabcaaaaaaabaaaxoaaaaa Sample Output0 ...

  7. 一份针对nginx的内核优化参数

    首先,需要修改/etc/sysctl.conf来更改内核参数.例如,最常用的配置: # ·file-max:这个参数表示进程(比如一个worker进程)可以同时打开的最大句柄数,这个参数直接限制最大并 ...

  8. C# Winform OpenFileDialog 控件

    OpenFileDialog控件又称打开文件对话框,主要用来弹出Windows中标准的[打开文件]对话框. OpenFileDialog控件的常用属性如下. (1)Title属性:用来获取或设置对话框 ...

  9. BZOJ1588 [HNOI2002]营业额统计 set

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1588 题意概括 给出数列,求  ∑F[i],其中F[1] = a[1] , F[i] = min( ...

  10. 练习|Django-多表

    models.py from django.db import models # Create your models here. class Author(models.Model): nid = ...