Effective C++ 条款46
本节条款:须要类型转换时请为模板定义非成员函数
这节知识是在条款24的基础上,讲述的有关非成员函数在模板类中(non-member function template)的作用。
我们先看一下条款24讲述的知识核心。条款24讲述了我们怎样能实现类的对象在特定条件下的隐式转换问题。
我们先看以下代码:
**
例一:
**
#include<iostream>
#include<assert.h>
using namespace std;
class Rational
{
private:
int numerator;
int denominator;
public:
Rational(int n = 0, int d = 1) : numerator(n), denominator(d)
{
assert(denominator != 0);
}
int GetNumerator() const
{
return numerator;
}
int GetDenominator() const
{
return denominator;
}
const Rational operator* (const Rational& r2);
};
const Rational Rational::operator* (const Rational& r2)
{
return Rational(this->GetNumerator()* r2.GetNumerator(), this->GetDenominator() * r2.GetDenominator());
}
int main()
{
Rational a(1,2);
Rational b = a * 2;
Rational c = 2 * a;//无法通过编译。
return 0;
}
**
例二:
**
#include<iostream>
#include<assert.h>
using namespace std;
class Rational
{
private:
int numerator;
int denominator;
public:
Rational(int n = 0, int d = 1) : numerator(n), denominator(d)
{
assert(denominator != 0);
}
int GetNumerator() const
{
return numerator;
}
int GetDenominator() const
{
return denominator;
}
};
const Rational operator* (const Rational& r1,const Rational& r2)
{
return Rational(r1.GetNumerator()* r2.GetNumerator(), r1.GetDenominator() *r2.GetDenominator());
}
int main()
{
Rational a(1,2);
Rational b = a * 2;
Rational c = 2 * a;//通过编译。
return 0;
}
我们通过以上两段代码能够看出non-member成员函数能够实现混合运算。事实上该函数的实质是利用了编译期间类对象的隐式转换实现的。
对于Rational c = 2 * a;这句话,假设声明为类内的成员函数,那么编译器编译2 * a时。由于2不是一个类的对象。所以编译器不会使用类内的那个成员函数。它会搜寻有没有别的operator*的重载函数。假设没有,编译失败。对于例二。正好有一个operator*函数。
又由于Rational类的构造函数是non-explicit类型,支持隐式转换,所以2被隐式转换为Rational类的对象,编译成功。
然而,在template中,想要实现以上功能。还要考虑其它的问题。
我们看以下的代码:
template<typename T>
class Rational{
public:
Rational(const T& numerator=0,const T& denominator=1);
const T numerator() const;
const T denominator() const;
……
};
template<typename T>
const Rational<T> operator*(const Rational<T>& lhs,const Rational<T>& rhs)
{……};
Rational<int> oneHalf(1,2);
Rational<int> result=oneHalf*2;//错误。无法通过编译
大家思考一下为什么oneHalf*2这句话不能通过编译。事实上,operator*模板函数中參数有两个,所以它会分别对这两个參数进行匹配来确定函数模板类型,试想一下,函数模板在没有实例化之前是不存在的,不存在的函数怎么会实现參数的隐式转换?我们来判断一般模板函数的运行过程,首先。模板函数通过自身參数实例化,实例化之后才会被调用运行。然而。对于本例来说,两个參数的类型一个是Rational<int>,还有一个是2,在编译期间前者能够被判断出来类型是int的rational,后者却判断不出来。由于在template实參推导过程中从不将隐式类型转换考虑在内。
为了能让编译通过,我们能够进行例如以下改变
template<typename T>
class Rational
{
public:
……
friend const Rational operator*(const Rational& lhs,const Rational& rhs);
{
return Rational(lhs.numerator()*rhs.numerator(),lhs.denominator()*rhs.denominator());
}
};
将operator*变成Rational类的友元函数。这样在定义一个Rational<int>对象的时候,operator*模板函数事实上已经被实例化了,这时候再调用oneHalf*2这句话的时候,就是直接调用已经实例化的operator*函数了,所以,此时,它支持隐式转换。将2转换为Rational<int>对象。
值得一提的是以上代码也可写成例如以下形式:
template<typename T>
class Rational
{
public:
……
friend const Rational<T> operator*(const Rational<T>& lhs,const Rational<T>& rhs);
{
return Rational<T>(lhs.numerator()*rhs.numerator(),lhs.denominator()*rhs.denominator());
}
};
也就是说Rational<T>和Rational的形式是一个意思,为了简化,我们能够用Rational的形式。
由于这样将友元函数定义在Rational类中,也就默认是内联函数inline了,为了避免复杂的friend函数影响代码体积,我们利用另外的一种形式实现。
例如以下代码:
template<typename T> class Rational;//forward decelarion
template<typename T>
const Rational<T> doMultiply(const Rational<T>& lhs,const Rational<T>& rhs);
template<typename T>
class Rational{
public:
……
friend const Rational operator*(const Rational& lhs,const Rational& rhs);//声明+定义
{
return doMultiply(lhs,rhs);
}
};
template<typename T>
const Rational<T> doMultiply(const Rational<T>& lhs,const Rational<T>& rhs)
{
return Rational<T>(lhs.numerator()*rhs.numerator(),lhs.denominator()*rhs.denominator());
}
我们又又一次定义了一个非类成员函数non-member,将此函数的声明和定义都放在类的外部,这样就能避免代码膨胀问题。
总结
当编写一个class template时,它所提供之“与此template相关的”函数支持“全部參数之隐式类型转换”时。请将那些函数定义为class template内部的friend函数。
Effective C++ 条款46的更多相关文章
- Effective C++ -----条款46:需要类型转换时请为模板定义非成员函数
当我们编写一个class template,而它所提供之“与此template相关的”函数支持“所有参数之隐式类型转换”时,请将那些函数定义为“class template内部的friend函数”.
- [More Effective C++]条款22有关返回值优化的验证结果
(这里的验证结果是针对返回值优化的,其实和条款22本身所说的,考虑以操作符复合形式(op=)取代其独身形式(op),关系不大.书生注) 在[More Effective C++]条款22的最后,在返回 ...
- More Effective C++ 条款0,1
More Effective C++ 条款0,1 条款0 关于编译器 不同的编译器支持C++的特性能力不同.有些编译器不支持bool类型,此时可用 enum bool{false, true};枚举类 ...
- Effective C++ 条款08:别让异常逃离析构函数
1.别让异常逃离析构函数的原因 <Effective C++>第三版中条款08建议不要在析构函数中抛出异常,原因是C++异常机制不能同时处理两个或两个以上的异常.多个异常同时存在的情况下, ...
- Effective C++ -----条款28:避免返回handles指向对象内部成分
避免返回handles(包括reference.指针.迭代器)指向对象内部.遵守这个条款可增加封装性,帮助const成员函数的行为像个const,并将发生“虚吊号码牌”(dangling handle ...
- Effective C++ -----条款21:必须返回对象时,别妄想返回其reference
绝不要返回pointer或reference指向一个local stack对象,或返回reference指向一个heap-allocated对象,或返回pointer或reference指向一个loc ...
- Effective C++ -----条款19:设计class犹如设计type
Class的设计就是type的设计.在定义一个新type之前,请确定你已经考虑过本条款覆盖的所有讨论主题. 新type的对象应该如何被创建和销毁? 对象的初始化和对象的赋值该有什么样的区别? 新typ ...
- Effective C++ -----条款18:让接口容易被正确使用,不易被误用
好的接口很容易被正确使用,不容易被误用.你应该在你IDE所有接口中努力达成这些性质. “促进正确使用”的办法包括接口的一致性,以及与内置类型的行为兼容. “阻止误用"的办法包括建立新类型.限 ...
- Effective C++:条款27——条款
条款27:尽量少做转型动作 单一对象可能拥有一个以上的地址!
随机推荐
- poj2352树状数组解决偏序问题
树状数组解决这种偏序问题是很厉害的! /* 输入按照y递增,对于第i颗星星,它的level就是之前出现过的星星中,横坐标小于i的总数 */ #include<iostream> #incl ...
- 两个inline-block元素上下不对齐,出现错位
摘要: 声明:此文章为转载(点击查看原文),如有侵权24小时内删除.联系QQ:1522025433. 问题描述:在类似 <div class="ovh"> <h3 ...
- java 知识体系
java分成J2ME(移动应用开发),J2SE(桌面应用开发),J2EE(Web企业级应用),所以java并不是单机版的,只是面向对象语言.建议如果学习java体系的话可以这样去学习: *第一阶段:J ...
- 《剑指offer》-数组中只出现一次的数字
/* 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. 思路: 如果是只有一个数字出现一次,那么所有数字做异或就得到结果: 现在有两个数字x,y分别出现一次 ...
- 【C++ Primer | 15】虚继承
虚基类 一.虚基类介绍 多继承时很容易产生命名冲突,即使我们很小心地将所有类中的成员变量和成员函数都命名为不同的名字,命名冲突依然有可能发生,比如非常经典的菱形继承层次.如下图所示: 类A派生出类B和 ...
- ajax请求返回json字符串/json对象 处理
1. 返回json字符串如何处理 $.ajax({ url:xxx, success:function(date){ }, error:function(){ } }); 通过最原始的返回: Prin ...
- 虚树------sdoi2011<消耗战>
卡着时间过得,大概是因为全用了ll,时间涨了一倍吧?? 懒得改了,第一道虚树还是思路比较重要 下面这段文字是复制来的: 给出一棵树. 每次询问选择一些点,求一些东西.这些东西的特点是,许多未选择的点可 ...
- python全栈开发day21面向对象初识总结
- 040 关于hive元数据的解析
一:原理 1.整体原理 找到数据库 找到表 先找分区表,然后不找SDS表了,先去找PARTITIONS表,根据这张表的SD_ID找对应的HDFS路劲 再普通表,直接根据SDS表的中SD_ID找到对应的 ...
- Smali语法
看阿里巴巴的<深入探索Android热修复>,里面的代码看不懂,一查才知道是Smali语法,百度了语法,转载如下 转载自smali 语言语法 1.smali apk文件通过apktool反 ...