Turing equation

时间限制: 1 Sec 内存限制: 128 MB


题目描述

The fight goes on, whether to store numbers starting with their most significant digit or their least significant digit. Sometimes this is also called the “Endian War”. The battleground dates far back into the early days of computer science. Joe Stoy, in his (by the way excellent) book “Denotational Semantics”, tells following story:

“The decision which way round the digits run is, of course, mathematically trivial. Indeed, one early British computer had numbers running from right to left (because the spot on an oscilloscope tube runs from left to right, but in serial logic the least significant digits are dealt with first). Turing used to mystify audiences at public lectures when, quite by accident, he would slip into this mode even for decimal arithmetic, and write things like 73+42=16. The next version of the machine was made more conventional simply by crossing the x-deflection wires: this, however, worried the engineers, whose waveforms were all backwards. That problem was in turn solved by providing a little window so that the engineers (who tended to be behind the computer anyway) could view the oscilloscope screen from the back.

You will play the role of the audience and judge on the truth value of Turing’s equations.

输入

The input contains several test cases. Each specifies on a single line a Turing equation. A Turing equation has the form “a+b=c”, where a, b, c are numbers made up of the digits 0,…,9. Each number will consist of at most 7 digits. This includes possible leading or trailing zeros. The equation “0+0=0” will finish the input and has to be processed, too. The equations will not contain any spaces.

输出

For each test case generate a line containing the word “TRUE” or the word “FALSE”, if the equation is true or false, respectively, in Turing’s interpretation, i.e. the numbers being read backwards.

样例输入

73+42=16

5+8=13

0001000+000200=00030

0+0=0

样例输出

TRUE

FALSE

TRUE

题意概括

输入一个等式a+b=c,判断等式是否成立(a,b,c输入时是倒着输入的,可能存在前导零)

解题思路

输入等式之后,先将a,b,c三个整数求出来,然后判断。

代码

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <queue> using namespace std; int main ()
{
char str[1000];
int a,b,c,i,j,k;
while (scanf("%s",str)!=EOF)
{
if (strcmp(str,"0+0=0")==0)
break;
a = b = c = 0;
int len = strlen(str);
for (i = len-1; i >= 0; i --)
{
if (str[i]>='0' && str[i]<='9')
while (str[i]>='0' && str[i]<='9')
{
a = a*10+str[i]-'0';
i --;
}
if (str[i] == '=')
break;
}
for (j = i; j >= 0; j --)
{
if (str[j]>='0' && str[j]<='9')
while (str[j]>='0' && str[j]<='9')
{
b = b*10+str[j]-'0';
j --;
}
if (str[j] == '+')
break;
}
for (k = j; k >= 0; k --)
{
if (str[k]>='0' && str[k]<='9')
while (str[k]>='0' && str[k]<='9')
{
c = c*10+str[k]-'0';
k --;
}
}
//printf("%d %d %d\n",a,b,c);
if (c+b == a)
printf("TRUE\n");
else
printf("FALSE\n");
}
return 0;
}

Turing equation的更多相关文章

  1. 第七届河南省赛F.Turing equation(模拟)

    10399: F.Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][St ...

  2. zzuoj--10399--Turing equation(模拟)

    Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 152  Solved: 85 [Submit][Status][Web ...

  3. poj 2572 Hard to Believe, but True!

    Hard to Believe, but True! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3537   Accep ...

  4. 每天一套题打卡|河南省第七届ACM/ICPC

    A 海岛争霸 题目:Q次询问,他想知道从岛屿A 到岛屿B 有没有行驶航线,若有的话,所经过的航线,危险程度最小可能是多少. 多源点最短路,用floyd 在松弛更新:g[i][k] < g[i][ ...

  5. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  6. CodeForces460B. Little Dima and Equation

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. ACM: FZU 2102 Solve equation - 手速题

     FZU 2102   Solve equation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  8. HDU 5937 Equation

    题意: 有1~9数字各有a1, a2, -, a9个, 有无穷多的+和=. 问只用这些数字, 最多能组成多少个不同的等式x+y=z, 其中x,y,z∈[1,9]. 等式中只要有一个数字不一样 就是不一 ...

  9. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

随机推荐

  1. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  2. every day a practice —— morning(7)

    It is probably because Willow was the last link to her parents and a pastime that goes back to her o ...

  3. Confluence 6 如何保持我空间的整洁

    如果你有很多用户在同一个空间中编辑和创建内容,你的空间将会很快的变得混乱不堪.你可以使用下面的一些步骤来避免这个的发生. 创建一系列的指南 让你的合作编辑用户知道创建页面的上级页面是什么,这样可以保证 ...

  4. CentOS中与网络相关的常用

    CentOS中与网络相关的常用配置文件 1. 常见的网络配置文件 /etc/hosts           本地域名解析表,用于解析主机名.对应于win系统中的C:\Windows\System32\ ...

  5. 148. Sort List (java 给单链表排序)

    题目:Sort a linked list in O(n log n) time using constant space complexity. 分析:给单链表排序,要求时间复杂度是O(nlogn) ...

  6. array_column的作用

    从记录集中取出 last_name 列,用相应的 "id" 列作为键值: <?php // 表示由数据库返回的可能记录集的数组 $a = array( array( 'id' ...

  7. 两个约束下的dp问题

    洛谷P1510 分析:本质上还是一个01背包,将体力当做重量,体积当做价值.配上滚动数组 即dp[j]代表在体力耗费为j时最大能搬运多少体积的石头,当dp[j]>v时就说明存在满足情况的解,这样 ...

  8. MyBatis中mybatis-generator代码生成的一般过程

    MyBatis框架的使用,可以参考我的文章: https://blog.csdn.net/JayInnn/article/details/81746571(基于Mybatis实现一个查库的接口) ht ...

  9. arp欺骗图解

    ARP协议:地址转换协议,工作在OSI模型的数据链路层,在以太网中,网络设备之间互相通信是用MAC地址而不是IP地址,ARP协议就是用来把IP地址转换为MAC地址的. 防止ARP攻击的方法: 1.使用 ...

  10. bzoj-2038-莫队

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 15784  Solved: 7164[Sub ...