/*
* TCP CUBIC: Binary Increase Congestion control for TCP v2.3
* Home page:
* http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
* This is from the implementation of CUBIC TCP in
* Sangtae Ha, Injong Rhee and Lisong Xu,
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
* in ACM SIGOPS Operating System Review, July 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
*
* CUBIC integrates a new slow start algorithm, called HyStart.
* The details of HyStart are presented in
* Sangtae Ha and Injong Rhee,
* "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
*
* All testing results are available from:
* http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
*
* Unless CUBIC is enabled and congestion window is large
* this behaves the same as the original Reno.
*/ #include <linux/mm.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <net/tcp.h> #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
* max_cwnd = snd_cwnd * beta
*/
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */
//Both run independently at the same time and slow start exits when any of them detects an exit point.
//1. ACK train length
//2. Delay increase #define HYSTART_ACK_TRAIN 0x1
#define HYSTART_DELAY 0x2
/* 注意:这里的delay_min没有放大8倍!
* 此宏用来计算Delay increase threshold
* delay_min <= 32ms,则threshold = 2ms
* 32ms < delay_min < 256ms,则threshold = delay_min / 16 ms
* delay_min >= 256ms,则threshold = 16ms
*/
/* Number of delay samples for detecting the increase of delay */
#define HYSTART_MIN_SAMPLES 8
#define HYSTART_DELAY_MIN (2U<<3)
#define HYSTART_DELAY_MAX (16U<<3)
#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence __read_mostly = ;
static int beta __read_mostly = ; /* = 717/1024 (BICTCP_BETA_SCALE) */
//beta在BIC中为819,而CUBIC中为717,
//会导致在bictcp_recalc_ssthresh中,并且启用了fast convergence,
//cubic: last_max_cwnd = 0.85*snd_cwnd ,而慢启动阈值=0.7*snd_cwnd 。
//bic: last_max_cwnd = 0.95*snd_cwnd ,而慢启动阈值=0.8*snd_cwnd 。
//这样会导致更早的到达平衡值,对snd_cwnd有很大的影响。 static int initial_ssthresh __read_mostly;
static int bic_scale __read_mostly = ;
static int tcp_friendliness __read_mostly = ; //hybrid slow start的开关
static int hystart __read_mostly = ;
//HyStart状态描述
//1:packet-train 2: delay 3:both packet-train and delay
//默认2种方法都使用,故设为3
static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
//设置snd_ssthresh的最小拥塞窗口值,除非cwnd超过了这个值,才能使用HyStart
static int hystart_low_window __read_mostly = ; static u32 cube_rtt_scale __read_mostly;
static u32 beta_scale __read_mostly;
static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */
module_param(fast_convergence, int, );
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
module_param(beta, int, );
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
module_param(initial_ssthresh, int, );
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
module_param(bic_scale, int, );
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
module_param(tcp_friendliness, int, );
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
module_param(hystart, int, );
MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
module_param(hystart_detect, int, );
MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
" 1: packet-train 2: delay 3: both packet-train and delay");
module_param(hystart_low_window, int, );
MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); /* BIC TCP Parameters */
struct bictcp {
u32 cnt; /*用来控制snd_cwnd的增长 increase cwnd by 1 after ACKs */
//两个重要的count值:
//第一个是tcp_sock->snd_cwnd_cnt,表示在当前的拥塞窗口中已经
//发送(经过对方ack包确认)的数据段的个数,
//而第二个是bictcp->cnt,它是cubic拥塞算法的核心,
//主要用来控制在拥塞避免状态的时候,什么时候才能增大拥塞窗口,
//具体实现是通过比较cnt和snd_cwnd_cnt,来决定是否增大拥塞窗口, u32 last_max_cwnd; /*上一次的最大拥塞窗口值 last maximum snd_cwnd */
u32 loss_cwnd; /* 拥塞状态切换时的拥塞窗口值congestion window at last loss */
u32 last_cwnd; /* 上一次的拥塞窗口值 the last snd_cwnd */
u32 last_time; /* time when updated last_cwnd */
u32 bic_origin_point;/*即新的Wmax饱和点,取Wlast_max_cwnd和snd_cwnd较大者 origin point of bic function */
u32 bic_K; /*即新Wmax所对应的时间点t,W(bic_K) = Wmax time to origin point from the beginning of the current epoch */
u32 delay_min; /*应该是最小RTT min delay */
u32 epoch_start; /*拥塞状态切换开始的时刻 beginning of an epoch */
u32 ack_cnt; /*在一个epoch中的ack包的数量 number of acks */
u32 tcp_cwnd; /*按照Reno算法计算得的cwnd estimated tcp cwnd */
#define ACK_RATIO_SHIFT 4
u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
u8 sample_cnt; /*第几个sample number of samples to decide curr_rtt */
u8 found; /* the exit point is found? */
u32 round_start; /*针对每个RTT beginning of each round */
u32 end_seq; /*用来标识每个RTT end_seq of the round */
u32 last_jiffies; /*超过2ms则不认为是连续的 last time when the ACK spacing is close */
u32 curr_rtt; /*由sampe中最小的决定 the minimum rtt of current round */
}; static inline void bictcp_reset(struct bictcp *ca)
{//论文说Time out时调用
ca->cnt = ;
ca->last_max_cwnd = ;
ca->loss_cwnd = ;
ca->last_cwnd = ;
ca->last_time = ;
ca->bic_origin_point = ;
ca->bic_K = ;
ca->delay_min = ;
ca->epoch_start = ;
ca->delayed_ack = << ACK_RATIO_SHIFT;
ca->ack_cnt = ;
ca->tcp_cwnd = ;
ca->found = ;
} static inline void bictcp_hystart_reset(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_jiffies = jiffies;//记录时间戳
ca->end_seq = tp->snd_nxt;//记录待发送的下一个序列号
ca->curr_rtt = ;
ca->sample_cnt = ; //bictcp_hystart_reset中并没有对ca->found置0。
//也就是说,只有在初始化时、LOSS状态时、开启hystart的慢启动时。
//HyStart才会派上用场,其它时间并不使用.
} static void bictcp_init(struct sock *sk)
{
bictcp_reset(inet_csk_ca(sk)); if (hystart)//如果指定hystart
bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh)
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
} /* calculate the cubic root of x using a table lookup followed by one
* Newton-Raphson iteration.
* Avg err ~= 0.195%
*/
static u32 cubic_root(u64 a) //用来计算立方根
{
u32 x, b, shift;
/*
* cbrt(x) MSB values for x MSB values in [0..63].
* Precomputed then refined by hand - Willy Tarreau
*
* For x in [0..63],
* v = cbrt(x << 18) - 1
* cbrt(x) = (v[x] + 10) >> 6
*/
static const u8 v[] = {
/* 0x00 */ , , , , , , , ,
/* 0x08 */ , , , , , , , ,
/* 0x10 */ , , , , , , , ,
/* 0x18 */ , , , , , , , ,
/* 0x20 */ , , , , , , , ,
/* 0x28 */ , , , , , , , ,
/* 0x30 */ , , , , , , , ,
/* 0x38 */ , , , , , , , ,
}; b = fls64(a);
if (b < ) {
/* a in [0..63] */
return ((u32)v[(u32)a] + ) >> ;
} b = ((b * ) >> ) - ;
shift = (a >> (b * )); x = ((u32)(((u32)v[shift] + ) << b)) >> ; /*
* Newton-Raphson iteration
* 2
* x = ( 2 * x + a / x ) / 3
* k+1 k k
*/
x = ( * x + (u32)div64_u64(a, (u64)x * (u64)(x - )));
x = ((x * ) >> );
return x;
} /*
* Compute congestion window to use.
*/ //从快速恢复退出并进入拥塞避免状态之后,更新cnt
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
{
u64 offs;//时间差|t - K|
//delta是cwnd差,bic_target是预测值,t为预测时间
u32 delta, t, bic_target, max_cnt; ca->ack_cnt++; /*ack包计数器加1 count the number of ACKs */ if (ca->last_cwnd == cwnd && //当前窗口与历史窗口相同
(s32)(tcp_time_stamp - ca->last_time) <= HZ / )//时间差小于1000/32ms
return; //直接结束 ca->last_cwnd = cwnd;//记录进入拥塞避免时的窗口值
ca->last_time = tcp_time_stamp;//记录进入拥塞避免时的时刻 if (ca->epoch_start == ) {//丢包后,开启一个新的时段
ca->epoch_start = tcp_time_stamp; /*新时段的开始 record the beginning of an epoch */
ca->ack_cnt = ; /*ack包计数器初始化 start counting */
ca->tcp_cwnd = cwnd; /*同步更新 syn with cubic */ //取max(last_max_cwnd , cwnd)作为当前Wmax饱和点
if (ca->last_max_cwnd <= cwnd) {
ca->bic_K = ;
ca->bic_origin_point = cwnd;
} else {
/* Compute new K based on
* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
*/
ca->bic_K = cubic_root(cube_factor
* (ca->last_max_cwnd - cwnd));
ca->bic_origin_point = ca->last_max_cwnd;
}
} /* cubic function - calc*/
/* calculate c * time^3 / rtt,
* while considering overflow in calculation of time^3
* (so time^3 is done by using 64 bit)
* and without the support of division of 64bit numbers
* (so all divisions are done by using 32 bit)
* also NOTE the unit of those veriables
* time = (t - K) / 2^bictcp_HZ
* c = bic_scale >> 10 == 0.04
* rtt = (srtt >> 3) / HZ
* !!! The following code does not have overflow problems,
* if the cwnd < 1 million packets !!!
*/ /* change the unit from HZ to bictcp_HZ */
t = ((tcp_time_stamp + (ca->delay_min>>) - ca->epoch_start)
<< BICTCP_HZ) / HZ; //求| t - bic_K |
if (t < ca->bic_K) // 还未达到Wmax
offs = ca->bic_K - t;
else
offs = t - ca->bic_K;//已经超过Wmax /* c/rtt * (t-K)^3 */ //计算立方,delta =| W(t) - W(bic_K) |
delta = (cube_rtt_scale * offs * offs * offs) >> (+*BICTCP_HZ); //t为预测时间,bic_K为新Wmax所对应的时间,
//bic_target为cwnd预测值,bic_origin_point为当前Wmax饱和点
if (t < ca->bic_K) /* below origin*/
bic_target = ca->bic_origin_point - delta;
else /* above origin*/
bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/
if (bic_target > cwnd) {// 相差越多,增长越快,这就是函数形状由来
ca->cnt = cwnd / (bic_target - cwnd);//
} else {//目前cwnd已经超出预期了,应该降速
ca->cnt = * cwnd; /* very small increment*/
} /* TCP Friendly —如果bic比RENO慢,则提升cwnd增长速度,即减小cnt
* 以上次丢包以后的时间t算起,每次RTT增长 3B / ( 2 - B),那么可以得到
* 采用RENO算法的cwnd。
* cwnd (RENO) = cwnd + 3B / (2 - B) * ack_cnt / cwnd
* B为乘性减少因子,在此算法中为0.3
*/
if (tcp_friendliness) {
u32 scale = beta_scale;
delta = (cwnd * scale) >> ; //delta代表多少ACK可使tcp_cwnd++
while (ca->ack_cnt > delta) { /* update tcp cwnd */
ca->ack_cnt -= delta;
ca->tcp_cwnd++;
} if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
delta = ca->tcp_cwnd - cwnd;
max_cnt = cwnd / delta;
if (ca->cnt > max_cnt)
ca->cnt = max_cnt;
}
} ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
if (ca->cnt == ) /* cannot be zero */
ca->cnt = ; //此时代表cwnd远小于bic_target,增长速度最大
} static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk); //判断发送拥塞窗口是否到达限制,如果到达限制则直接返回。
if (!tcp_is_cwnd_limited(sk, in_flight))
return; if (tp->snd_cwnd <= tp->snd_ssthresh) {
//当snd_cwnd<=ssthresh的时候,进入慢启动状态
if (hystart && after(ack, ca->end_seq))//是否需要reset对应的bictcp的值
bictcp_hystart_reset(sk);
tcp_slow_start(tp);//进入slow start状态
} else {
//当snd_cwnd>ssthresh的时候,进入拥塞避免状态
bictcp_update(ca, tp->snd_cwnd);//首先会更新bictcp->cnt
tcp_cong_avoid_ai(tp, ca->cnt);//然后进入拥塞避免,更新tcp_sock->snd_cwnd_cnt
} } //每次发生拥塞状态切换时,就会重新计算慢启动阈值
//做了两件事:重赋值last_max_cwnd、返回新的慢启动阈值
static u32 bictcp_recalc_ssthresh(struct sock *sk)
{//论文说这个函数在Packet loss时调用
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = ; /* 发生拥塞状态切换,标志一个epoch结束 end of epoch */ /* Wmax and fast convergence */
//当一个新的TCP流加入到网络,
//网络中已有TCP流需要放弃自己带宽,
//给新的TCP流提供一定的上升空间。
//为提高已有TCP流所释放的带宽而引入快速收敛机制。
if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
//snd_cwnd<last_max_cwnd
//表示已有TCP流所经历的饱和点因为可用带宽改变而正在降低。
//然后,通过进一步降低Wmax让已有流释放更多带宽。
//这种行为有效地延长已有流增大其窗口的时间,
//因为降低后的Wmax强制已有流更早进入平稳状态。
//这允许新流有更多的时间来赶上其窗口尺寸。
ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
/ ( * BICTCP_BETA_SCALE); //last_max_cwnd = 0.9 * snd_cwnd
else
ca->last_max_cwnd = tp->snd_cwnd; ca->loss_cwnd = tp->snd_cwnd; //修改snd_ssthresh,即max(0.7*snd_cwnd,2)
return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); } static u32 bictcp_undo_cwnd(struct sock *sk)
{
struct bictcp *ca = inet_csk_ca(sk); return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
} static void bictcp_state(struct sock *sk, u8 new_state)
{
if (new_state == TCP_CA_Loss) {//如果处于LOSS状态,丢包处理
bictcp_reset(inet_csk_ca(sk));
bictcp_hystart_reset(sk);
}
} static void hystart_update(struct sock *sk, u32 delay)
{//会修改snd_ssthresh
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk); if (!(ca->found & hystart_detect)) {
u32 curr_jiffies = jiffies; /* first detection parameter - ack-train detection */
if (curr_jiffies - ca->last_jiffies <= msecs_to_jiffies()) {
ca->last_jiffies = curr_jiffies;
if (curr_jiffies - ca->round_start >= ca->delay_min>>)
ca->found |= HYSTART_ACK_TRAIN;
} /* obtain the minimum delay of more than sampling packets */
if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
if (ca->curr_rtt == || ca->curr_rtt > delay)
ca->curr_rtt = delay; ca->sample_cnt++;
} else {
if (ca->curr_rtt > ca->delay_min +
HYSTART_DELAY_THRESH(ca->delay_min>>))
ca->found |= HYSTART_DELAY;
}
/*
* Either one of two conditions are met,
* we exit from slow start immediately.
*/
if (ca->found & hystart_detect)//found是一个是否退出slow start的标记
tp->snd_ssthresh = tp->snd_cwnd;//修改snd_ssthresh
}
} /* Track delayed acknowledgment ratio using sliding window
* ratio = (15*ratio + sample) / 16
*/ //基本每次收到ack都会调用这个函数,更新snd_ssthresh和delayed_ack
static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
{//论文说这个函数在On each ACK时调用
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
u32 delay; if (icsk->icsk_ca_state == TCP_CA_Open) {
cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
ca->delayed_ack += cnt;
} /* Some calls are for duplicates without timetamps */
if (rtt_us < )
return; /* Discard delay samples right after fast recovery */
if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
return; delay = usecs_to_jiffies(rtt_us) << ;
if (delay == )
delay = ; /* first time call or link delay decreases */
if (ca->delay_min == || ca->delay_min > delay)
ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */
//tp->snd_ssthresh初始值是一个很大的值0x7fffffff //当拥塞窗口增大到16的时候,
//调用hystart_update来修改更新snd_ssthresh
//hystart_update主要用于是否退出slow start
if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
tp->snd_cwnd >= hystart_low_window)
hystart_update(sk, delay);
} static struct tcp_congestion_ops cubictcp = { .init = bictcp_init, //调用ssthresh函数的地方有:tcp_fastretrans_alert(), tcp_enter_cwr(),tcp_enter_frto(), tcp_enter_loss() 
//看起来每次发生拥塞状态切换的时候,都会调整ssthresh。   
  //修改snd_ssthresh值的地方有bictcp_init,hystart_update以及上面列出的调用ssthresh函数处。
.ssthresh = bictcp_recalc_ssthresh, //发送方发出一个data包之后,接收方回复一个ack包,发送方收到这个ack包之后,
  //调用tcp_ack()->tcp_cong_avoid()->bictcp_cong_avoid()来更改拥塞窗口snd_cwnd大小.
.cong_avoid = bictcp_cong_avoid, .set_state = bictcp_state, //调用undo_cwnd函数的地方有:tcp_undo_cwr()用来撤销之前误判导致的"缩小拥塞窗口"
.undo_cwnd = bictcp_undo_cwnd, //调用ptts_acked函数的路径为:tcp_ack() -->tcp_clean_rtx_queue()
.pkts_acked = bictcp_acked, .owner = THIS_MODULE,
.name = "cubic",
}; static int __init cubictcp_register(void)
{
//bictcp参数的个数不能过多
BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet
* based on SRTT of 100ms
*/
//beta_scale == 8*(1024 + 717) / 3 / (1024 -717 ),大约为15
beta_scale = *(BICTCP_BETA_SCALE+beta)/ / (BICTCP_BETA_SCALE - beta); //cube_rtt_scale == 41*10 = 410
cube_rtt_scale = (bic_scale * ); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
* so K = cubic_root( (wmax-cwnd)*rtt/c )
* the unit of K is bictcp_HZ=2^10, not HZ
*
* c = bic_scale >> 10
* rtt = 100ms
*
* the following code has been designed and tested for
* cwnd < 1 million packets
* RTT < 100 seconds
* HZ < 1,000,00 (corresponding to 10 nano-second)
*/ /* 1/c * 2^2*bictcp_HZ * srtt */
cube_factor = 1ull << (+*BICTCP_HZ); /* cube_factor == 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */
do_div(cube_factor, bic_scale * );//cube_factor == 2^40 / 410 return tcp_register_congestion_control(&cubictcp);
} static void __exit cubictcp_unregister(void)
{
tcp_unregister_congestion_control(&cubictcp);
} module_init(cubictcp_register);
module_exit(cubictcp_unregister); MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CUBIC TCP");
MODULE_VERSION("2.3");

tcp cubic代码分析的更多相关文章

  1. wifi display代码 分析

    转自:http://blog.csdn.net/lilian0118/article/details/23168531 这一章中我们来看Wifi Display连接过程的建立,包含P2P的部分和RTS ...

  2. tcprstat源码分析之tcp数据包分析

    tcprstat是percona用来监测mysql响应时间的.不过对于任何运行在TCP协议上的响应时间,都可以用.本文主要做源码分析,如何使用tcprstat请大家查看博文<tcprstat分析 ...

  3. Bluez SPP实现代码分析(转)

    源:http://blog.csdn.net/walkingman321/article/details/7218705 本文分析蓝牙协议栈中蓝牙转串口(SPP)部分的实现. 1.  基本概念 Blu ...

  4. 虚拟机创建流程中neutron代码分析(三)

    前言: 当neutron-server创建了port信息,将port信息写入数据库中.流程返回到nova服务端,接着nova创建的流程继续走.在计算节点中neutron-agent同样要完成很多的工作 ...

  5. 20165223《网络对抗技术》Exp4 恶意代码分析

    目录 -- 恶意代码分析 恶意代码分析说明 实验任务目标 实验内容概述 schtasks命令使用 实验内容 系统运行监控 恶意软件分析 静态分析 virscan分析和VirusTotal分析 PEiD ...

  6. Exp4 恶意代码分析

    一.原理与实践说明 1. 实践目标 1.1 监控你自己系统的运行状态,看有没有可疑的程序在运行. 1.2 分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysin ...

  7. 2018-2019 20165237网络对抗 Exp4 恶意代码分析

    2018-2019 20165237网络对抗 Exp4 恶意代码分析 实验目标 1.1是监控你自己系统的运行状态,看有没有可疑的程序在运行. 1.2是分析一个恶意软件,就分析Exp2或Exp3中生成后 ...

  8. 2018-2019-2 20165325 网络对抗技术 Exp4 恶意代码分析

    2018-2019-2 20165325 网络对抗技术 Exp4 恶意代码分析 实验内容(概要) 一.系统(联网)运行监控 1. 使用如计划任务,每隔一分钟记录自己的电脑有哪些程序在联网,逐步排查并且 ...

  9. 2018-2019-2 网络对抗技术 20165206 Exp4 恶意代码分析

    - 2018-2019-2 网络对抗技术 20165206 Exp4 恶意代码分析 - 实验任务 1系统运行监控(2分) (1)使用如计划任务,每隔一分钟记录自己的电脑有哪些程序在联网,连接的外部IP ...

随机推荐

  1. Linux上的下载软件uGet

    uGet是一款开源下载软件,类似于我们常用的迅雷,不过uGet支持的操作系统非常多,Ubunut,Arch,openSUSE,Windows,MacOS,BSD等. uGet支持两个下载引擎:curl ...

  2. Secure Sockets Layer(安全套接层)

    SSL SSL(Secure Sockets Layer安全套接层)及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议.TL ...

  3. 003-maven简介

    1.1简介 Maven,只是的积累,专家或内行 Maven是优秀的构建工具,依赖管理工具,项目信息管理工具,跨平台.提供了中央仓库,自动下载构件. 1.通过坐标系统定位每一个构件(artifact), ...

  4. PAT 1146 Topological Order[难]

    1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which o ...

  5. C++实现不能继承的类

    实现一个不能继承的类,这在Java等语言中是很好实现的,被final关键字修饰的类不能被继承. C++中没有类似的关键字,须自己实现.一般有如下两种方法: 1.设置构造方法与析构方法为私有 class ...

  6. crm 使用stark组件

    # Create your models here. from django.db import models class Department(models.Model): "" ...

  7. Divide by Zero 2017 and Codeforces Round #399 (Div. 1 + Div. 2, combined) B. Code For 1

    地址:http://codeforces.com/contest/768/problem/B 题目: B. Code For 1 time limit per test 2 seconds memor ...

  8. request.getQueryString()代表的含义

    在jsp做分页的时候,有时候我们想获取get请求链接中的参数保留下来. 比如客户端发送 http://localhost/test.do?a=b&c=d&e=f 通过request.g ...

  9. genisoimage命令用法

    功能说明:建立ISO 9660映像文件.  常用命令:genisoimage -o imagename.iso file 语 法:mkisofs [-adDfhJlLNrRTvz][-print-si ...

  10. BigDecimal处理加减乘除

    public static void main(String[] args) { BigDecimal totalDoneAmt = new BigDecimal(2); Double d1 = ad ...