最近重装系统,安装了tensorflow的配置环境

总结一下。

参考资料

http://blog.csdn.net/ZWX2445205419/article/details/69429518

http://blog.csdn.net/u013294888/article/details/56666023

http://www.2cto.com/kf/201612/578337.html

http://blog.csdn.net/10km/article/details/61915535

第一步 安装NIVDIA驱动

1.0 关闭secure boot;

这一步是最关键的,否则后面都无法安装!!!!

1.1 查询Nvidia显卡驱动信息

查看显卡的型号

lspci | grep -i vga

lspci | grep -i nvidia

然后看显卡驱动

lsmod | grep -i nvidia

#查看你的系统信息

uname -m && cat /etc/*release

# 查看核

uname -r

# 为当前核安装kernel headers和development packages

sudo apt-get install linux-headers-$(uname -r)

1.2拉黑nouveau

ubuntu自带的nouveau驱动会影响cuda安装,不当操作会导致黑屏和登陆循环

终端中运行:

lsmod | grep nouveau

如果有输出则代表nouveau正在加载。

关闭方法

创建vim /etc/modprobe.d/blacklist-nouveau.conf,

写入:

blacklist nouveau

options nouveau modeset=0

拉黑nouveau这个显卡驱动,需要编辑配置文件并添加配置参数:按Ctrl+Alt+T打开终端,输入以下命令(#开头的内容是注释不会被执行):

sudo gedit /etc/modprobe.d/blacklist.conf   # 用gedit编辑器打开配置文件

在文件末尾追加如下内容:

blacklist nouveau

1.3 卸载之前安装的Nvidia显卡驱动安装

sudo apt-get remove –purge nvidia-*

1.4 安装NVIDIA驱动

在ubuntu16.04中,更换驱动非常方便,去

系统设置->软件更新->附加驱动->切换到最新的NVIDIA驱动即可。应用更改->重启

验证安装是否成功

终端输入nvidia-smi

如果出现了你的GPU列表,则说明驱动安装成功了。

另外也可以输入nvidia-settings

出现安装驱动完成

第二部 安装CUDA 8.0

2.1 命令行安装.run文件

下载地址 https://developer.nvidia.com/cuda-toolkit-archive

sudo sh cuda_8.0.61_375.26_linux.run

安装过程:

Do you accept the previously read EULA?

accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?

(y)es/(n)o/(q)uit: n(这一步选择n,其他选择y或者按enter)

Install the CUDA 8.0 Toolkit?

(y)es/(n)o/(q)uit: y

Enter Toolkit Location

[ default is /usr/local/cuda-8.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?

(y)es/(n)o/(q)uit: y

Install the CUDA 8.0 Samples?

(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location

[ default is /home/maddock ]:

Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...

Installing the CUDA Samples in /home/maddock ...

Copying samples to /home/maddock/NVIDIA_CUDA-8.0_Samples now...

Finished copying samples.

===========

= Summary =

===========

Driver:   Not Selected

Toolkit:  Installed in /usr/local/cuda-8.0

Samples:  Installed in /home/maddock

Please make sure that

-   PATH includes /usr/local/cuda-8.0/bin

-   LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.

To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:

sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_20707.log

安装cuda时可能有下面的信息

Installing the CUDA Toolkit in /usr/local/cuda-8.0 …

Missing recommended library: libGLU.so

Missing recommended library: libX11.so

Missing recommended library: libXi.so

Missing recommended library: libXmu.so

解决方法

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

2.2 设置环境变量

编辑home目录下面.bashrc文件

sudo vim ~/.bashrc

输入下面内容

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda/lib64/

使得环境变量生效

source ~/.bashrc

2.3测试CUDA的sammples

运行如下的命令

cd /usr/local/cuda-8.0/samples

sudo make all

cd ./1_Utilities/deviceQuery

sudo make

./deviceQuery

测试过程中

/usr/bin/ld: 找不到 -lnvcuvid

collect2: error: ld returned 1 exit status

Makefile:381: recipe for target 'cudaDecodeGL' failed

参考网站

https://askubuntu.com/questions/891003/failure-in-running-cuda-sample-after-cuda-8-0-installation

http://www.caffecn.cn/?/question/1109

将 UBUNTU_PKG_NAME = "nvidia-367" 换成UBUNTU_PKG_NAME = "nvidia-375"

执行sudo sed -i "s/nvidia-367/nvidia-375/g" `grep nvidia-367 -rl .`

接着sudo make

全部编译完成后, 进入 samples/bin/x86_64/Linux/release,

sudo下运行deviceQuery

sudo ./deviceQuery

如何查看CUDA的版本

nvcc -V

第三部分安装cuDNN

3.1 cuDNN安装

下载下来以后,发现是一个tgz的压缩包,使用tar进行解压

tar -xvf cudnn-8.0-linux-x64-v5.1.tgz

安装cuDNN比较简单,解压后把相应的文件拷贝到对应的CUDA目录下即可

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

sudo chmod a+r /usr/local/cuda/include/cudnn.h

sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

3.2 更改动态文件链接

cd /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so libcudnn.so.5  #删除原有动态文件

以下的两步设置软连接时

一定要注意自己电脑的/usr/local/cuda/lib64/下的libcudnn.so.5.1.10名字,

有的可能是libcudnn.so.5.0.5等,要依据自己的电脑上的文件来定

sudo ln -s libcudnn.so.5.1.10 libcudnn.so.5                      #生成软链接

sudo ln -s libcudnn.so.5 libcudnn.so                            #生成软链接

3.3 cuDNN后续升级

(1)重复3.1的步骤

(2)

cd /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so libcudnn.so.5  #删除原有动态文件

sudo ln -s libcudnn.so.5.1.x libcudnn.so.5                      #生成软链接

sudo ln -s libcudnn.so.5 libcudnn.so                            #生成软链接

解释,根据升级对应的版本号修改x符号

部分 安装tensorflow

极客安装

http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/os_setup.html

https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/1-2-install

http://blog.csdn.net/u014516389/article/details/72818155/

4.1安装pip

使用pip或pip3直接安装tensorflow

首先安装其依赖项

$ sudo apt-get install python-pip python-dev   # for Python 2.7

$ sudo apt-get install python3-pip python3-dev # for Python 3.n

检查pip以及python的版本

输入pip -V && python -V出现

pip 8.1.1 from /usr/lib/python2.7/dist-packages (python 2.7)

Python 2.7.12

4.2 安装TF

(1) 安装GPU最新的版本

一定要加上sudo安装在系统python目录下面

sudo pip install tensorflow-gpu

$ sudo pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.4.0
Summary: TensorFlow helps the tensors flow
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: mock, tensorflow-tensorboard, numpy, backports.weakref, wheel, six, protobuf, enum34

(2)安装tensorflow指定的版本

sudo pip install tensorflow-gpu==1.2.0

$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl

4.3 TF升级

1.我下载的是当前的最新版本,后期如果需要新的版本,比如升级到1.5.0

$ pip install --upgrade tensorflow-gpu==1.5.0

2.也可以登陆https://storage.googleapis.com/tensorflow/,看是否有更新,然后先卸载,再将对应位置更改一下即可,但须卸载旧的版本

$ sudo pip uninstall tensorflow-gpu

这样TensorFlow的环境就安装完成了

测试

import tensorflow as tf

hello=tf.constant('Hello, TensorFlow')

sess=tf.Session()

print(sess.run(hello))

Hello, TensorFlow!

Ubuntu16.04+cuda8.0+cuDNNV5.1 + Tensorflow+ GT 840M安装小结的更多相关文章

  1. Ubuntu16.04+CUDA8.0+cuDNN5.1+Python2.7+TensorFlow1.2.0环境搭建

    软件版本说明:我选的Linux系统是Ubuntu16.04,CUDA用的8.0,Ubuntu16.04+CUDA8.0+cuDNN5.1+Python2.7只支持TensorFlow1.3.0以下的版 ...

  2. Ubuntu16.04+Cuda8.0+1080ti+caffe+免OpenCV3.2.0+faster-rCNN教程

    一.事先声明:1.Ubuntu版本:Ubuntu使用的是16.04.而不是16.04.1或16.04.2,这三个是有区别的.笔者曾有过这样的经历,Git上一个SLAM地图构建程序在Ubuntu14.0 ...

  3. Ubuntu16.04+CUDA8.0+CUNN5.1+caffe+tensorflow+Theano

    title: Ubuntu 16.04+CUDA8.0+CUNN5.1+caffe+tensorflow+Theano categories: 深度学习 tags: [深度学习框架搭建] --- 前言 ...

  4. 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3

    紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...

  5. Ubuntu16.04 +cuda8.0+cudnn+caffe+theano+tensorflow配置明细

      本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www ...

  6. Ubuntu16.04 + cuda8.0 + GTX1080安装教程

    1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从 ubuntu官方 下载64位版本: ubuntu-16.04-desktop-amd64.iso . 在MAC下制 ...

  7. ubuntu14.04 + cuda8.0 + cudnnv5 + caffe + py-faster-rcnn配置

    经过几天的奋战终于配置好了如题所述的配置,现在把配置大体过程写下来供大家配置时参考(由于电脑硬件和系统的千差万别,实在不适合写详细的) (一切不声明配置环境的配置教程都是耍流氓) 环境: Inter集 ...

  8. ubuntu16.04+cuda8.0+caffe

    =========== 如果出现nvidia-smi failed to communicate with nvidia driver,循环登录情况,则: sudo apt-get remove -- ...

  9. ubuntu16.04+cuda8.0+cudnn5.0+caffe

    ubuntu安装过程(硬盘安装)http://www.cnblogs.com/zhbzz2007/p/5493395.html“但是千万不要用麒麟版!!!比原版体验要差很多!!!”开关机的时候电脑最上 ...

随机推荐

  1. FileItem 出现部分中文乱码解决办法

    首先要进行两处的修改: 第一:如果你使用了上传文件的包, 如:ServletFileUpload sfu = new ServletFileUpload(factory); sfu.setHeader ...

  2. UNIX网络编程读书笔记:select函数

    select函数概况: select函数允许进程指示内核等待多个事件中的任何一个发生,并仅在有一个或多个事件发生或经历一段指定的时间后才唤醒它. 作为一个例子,我们可以调用select,告知内核仅在下 ...

  3. iOS7 UIKit动力学-重力特性UIGravityBehavior

    续文 在iOS7中事实上新加了非常多新的特性.之前看过,也了解过一些新的内容.如新的动力学特性,TextKit的图文混排,还有自己定义的动画跳转等.那段时间也比較忙,没时间整理.如今项目也弄完了,打算 ...

  4. GameCenter 使用指南

    原地址:http://www.cocoachina.com/gamedev/misc/2010/1022/2229.html GameCenter 为单机游戏为主的 iPhone 游戏平台引入了社会化 ...

  5. sparkContext 读取hdfs文件流程及分片机制

  6. java FileI(O)nputStream为什么比BufferedI(O)utputStream慢?

    因为buffered多了一个缓冲区,读和写都是先把硬盘或者内存中的数据放到内存中一块缓存区域,到一定大小读写到硬盘或者内存   package io; import java.io.*; public ...

  7. HBase源代码分析之HRegionServer上MemStore的flush处理流程(一)

    在<HBase源代码分析之HRegion上MemStore的flsuh流程(一)>.<HBase源代码分析之HRegion上MemStore的flsuh流程(二)>等文中.我们 ...

  8. 【WEB开发】微信网页授权第三方登录接口(WEB登录)

    随着手机微信的崛起,腾讯发布的微信联登确实很诱惑pc端的伙伴们,现在就说说在pc端用微信扫一扫实现微信第三方登陆的方式.(具体代码U盘) 本文链接至:http://blog.csdn.net/hxke ...

  9. __packed字节对齐

    比如: typedef __packed struct READ_Command{    u_char code;    u_int addr;    u_char len;} READ_Comman ...

  10. WCF实现RESTFul Web Service

    共同学习了前面一些概念,终于开始正题了哈.RESTful的Web Service调用直观,返回的内容容易解析.这里先会描述一个简单的场景--Web Service提供一个方法来搜索个人信息,传入人名, ...