语音性别识别 - 使用R提取特征
步骤
1)安装R。windows操作系统安装包的链接:https://cran.r-project.org/bin/windows/base/
2)切换当前路径为脚本所在路径
点击 文件 > 改变工作目录
3)运行脚本
点击 文件 > 运行R脚本文件
如果希望自己生成训练数据,就运行生成训练数据的脚本。如果只是想生成测试数据,就运行生成测试数据的脚本。
生成训练数据的脚本
将男声的音频文件置于male文件夹下,将女声的音频文件置于female文件夹下
packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart)
library(warbleR)
library(mice)
library(e1071)
specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame")
#if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end")
#if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric")
#if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)"))
#if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE)
#if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")}
#return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found"))
#count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
}
# If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer")
# If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply
options(warn = )
if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds")
b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) -
#frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE)
#save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/
#Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ]
#Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T)
#Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i])
#modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange
#save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
}))
#change result names
rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x))
return(x)
}
processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame()
# Get list of files in the folder.
list <- list.files(folderName, '\\.wav')
# Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
}
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Move into folder for processing.
setwd(folderName)
# Process files.
acoustics <- specan3(data, parallel=)
# Move back into parent folder.
setwd('..')
acoustics
}
gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
}
# Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath)
# Set directory to read file.
setwd(path)
# Start with empty data.frame.
data <- data.frame(fileName, , , )
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Process files.
acoustics <- specan3(data, parallel=)
# Restore path.
setwd(currentPath)
predict(genderCombo, newdata=acoustics)
}
# Load data
males <- processFolder('male')
females <- processFolder('female')
# Set labels.
males$label <-
females$label <-
data <- rbind(males, females)
data$label <- factor(data$label, labels=c('male', 'female'))
# Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL
# Remove rows containing NA's.
data <- data[complete.cases(data),]
# Write out csv dataset.
write.csv(data, file='voice.csv', sep=',', row.names=F)
meelo
生成测试数据的脚本
将测试音频文件置于test文件夹下
packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart)
library(warbleR)
library(mice)
library(e1071)
specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame")
#if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end")
#if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric")
#if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)"))
#if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE)
#if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")}
#return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found"))
#count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
}
# If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer")
# If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply
options(warn = )
if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds")
b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) -
#frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE)
#save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/
#Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ]
#Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T)
#Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i])
#modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange
#save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
}))
#change result names
rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x))
return(x)
}
processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame()
# Get list of files in the folder.
list <- list.files(folderName, '\\.wav')
# Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
}
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Move into folder for processing.
setwd(folderName)
# Process files.
acoustics <- specan3(data, parallel=)
# Move back into parent folder.
setwd('..')
acoustics
}
gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
}
# Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath)
# Set directory to read file.
setwd(path)
# Start with empty data.frame.
data <- data.frame(fileName, , , )
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Process files.
acoustics <- specan3(data, parallel=)
# Restore path.
setwd(currentPath)
predict(genderCombo, newdata=acoustics)
}
# Load data
data <- processFolder('test')
# Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL
# Remove rows containing NA's.
data <- data[complete.cases(data),]
# Write out csv dataset.
write.csv(data, file='test.csv', sep=',', row.names=F)
meelo
语音性别识别 - 使用R提取特征的更多相关文章
- 论文笔记:语音情感识别(三)手工特征+CRNN
一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...
- 论文笔记:语音情感识别(四)语音特征之声谱图,log梅尔谱,MFCC,deltas
一:原始信号 从音频文件中读取出来的原始语音信号通常称为raw waveform,是一个一维数组,长度是由音频长度和采样率决定,比如采样率Fs为16KHz,表示一秒钟内采样16000个点,这个时候如果 ...
- C++开发人脸性别识别教程(12)——加入性别识别功能
经过之前几篇博客的解说,我们已经成功搭建了MFC应用框架,并实现了主要的图像显示和人脸检測程序,在这篇博文中我们要向当中加入性别识别代码. 关于性别识别,之前已经专门拿出两篇博客的篇幅来进行解说.这里 ...
- 论文笔记:语音情感识别(五)语音特征集之eGeMAPS,ComParE,09IS,BoAW
一:LLDs特征和HSFs特征 (1)首先区分一下frame和utterance,frame就是一帧语音.utterance是一段语音,是比帧高一级的语音单位,通常指一句话,一个语音样本.uttera ...
- 论文笔记:语音情感识别(二)声谱图+CRNN
一:An Attention Pooling based Representation Learning Method for Speech Emotion Recognition(2018 Inte ...
- 基于人脸识别+IMDB-WIFI+Caffe的性别识别
本文用记录基于Caffe的人脸性别识别过程.基于imdb-wiki模型做finetune,imdb-wiki数据集合模型可从这里下载:https://data.vision.ee.ethz.ch/cv ...
- 图像物体检測识别中的LBP特征
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中 ...
- 基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...
- 卷积神经网络提取特征并用于SVM
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...
随机推荐
- go日期时间函数+常用内建函数+错误处理
日期时间函数 // 时间日期函数包 import "time" // 1. 当前时间 time.Now()-->time.Time类型 // 2. now:=time.Now ...
- HTML 页面源代码布局介绍
http://www.cnblogs.com/polk6/archive/2013/05/10/3071451.html 此介绍以google首页源代码截图为例: 从上到下依次介绍: 1.<!D ...
- 洛谷P1937 [USACO10MAR]仓配置Barn Allocation
题目描述 Farmer John recently opened up a new barn and is now accepting stall allocation requests from t ...
- 杨辉三角之c实现任意行输出
#include<stdio.h> #include<stdlib.h> int** fmalloc(int n){ int** array; //二维指针 int i; ar ...
- Kubernetes 1.5部署sonarqube
前面几篇博文我们一直在说kubernetes的基础环境的安装及部署.在基础环境部署完成以后,我们开始尝试使用kubernetes来管理我们的应用.本篇博文通过一个简单的示例来向大家展示如何通过depl ...
- 关于Linux运维的一些题目总结
一.有文件file1 1.查询file1里面空行的所在行号 awk ‘{if($0~/^$/)print NR}’ fileorgrep -n ^$ file |awk ‘BEGIN{FS=”:”}{ ...
- PHP字符串定义方式和单引号双引号的区别
$str=<<<任意标记 ......................... .............................. 任何标记; 单引号和双引号的区别? ''号 ...
- 谷歌地图 API 开发之添加标记(解析以及补充)
今天又看了下官网,发现官网上有地图标记的详细说明.当时居然眼瞎看不见,还琢磨了好久...#$%^&,一定是项目太急,没看到(^o^)/~地址:https://developers.google ...
- 在vm上面安装Linux系统
1 在vm上面安装Linux系统 1 以管理员的身份运行VMware: 点击VM图标然后右键属性 ,点兼容性 ---特权 等级 选择 以管理员的身份运行此软件 2 . 添加一个虚 ...
- 理解 CSS 中的伪元素 :before 和 :after
CSS 的主要目的是给 HTML 元素添加样式,然而,在一些案例中给文档添加额外的元素是多余的或是不可能的.事实上 CSS 中有一个特性允许我们添加额外元素而不扰乱文档本身,这就是“伪元素”. 你一定 ...