语音性别识别 - 使用R提取特征
步骤
1)安装R。windows操作系统安装包的链接:https://cran.r-project.org/bin/windows/base/
2)切换当前路径为脚本所在路径
点击 文件 > 改变工作目录
3)运行脚本
点击 文件 > 运行R脚本文件
如果希望自己生成训练数据,就运行生成训练数据的脚本。如果只是想生成测试数据,就运行生成测试数据的脚本。
生成训练数据的脚本
将男声的音频文件置于male文件夹下,将女声的音频文件置于female文件夹下
packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart)
library(warbleR)
library(mice)
library(e1071)
specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame")
#if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end")
#if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric")
#if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)"))
#if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE)
#if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")}
#return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found"))
#count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
}
# If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer")
# If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply
options(warn = )
if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds")
b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) -
#frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE)
#save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/
#Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ]
#Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T)
#Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i])
#modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange
#save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
}))
#change result names
rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x))
return(x)
}
processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame()
# Get list of files in the folder.
list <- list.files(folderName, '\\.wav')
# Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
}
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Move into folder for processing.
setwd(folderName)
# Process files.
acoustics <- specan3(data, parallel=)
# Move back into parent folder.
setwd('..')
acoustics
}
gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
}
# Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath)
# Set directory to read file.
setwd(path)
# Start with empty data.frame.
data <- data.frame(fileName, , , )
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Process files.
acoustics <- specan3(data, parallel=)
# Restore path.
setwd(currentPath)
predict(genderCombo, newdata=acoustics)
}
# Load data
males <- processFolder('male')
females <- processFolder('female')
# Set labels.
males$label <-
females$label <-
data <- rbind(males, females)
data$label <- factor(data$label, labels=c('male', 'female'))
# Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL
# Remove rows containing NA's.
data <- data[complete.cases(data),]
# Write out csv dataset.
write.csv(data, file='voice.csv', sep=',', row.names=F)
meelo
生成测试数据的脚本
将测试音频文件置于test文件夹下
packages <- c('tuneR', 'seewave', 'fftw', 'caTools', 'warbleR', 'mice', 'e1071', 'rpart', 'e1071')
if (length(setdiff(packages, rownames(installed.packages()))) > ) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
library(tuneR)
library(seewave)
library(caTools)
library(rpart)
library(warbleR)
library(mice)
library(e1071)
specan3 <- function(X, bp = c(,), wl = , threshold = , parallel = ){
# To use parallel processing: library(devtools), install_github('nathanvan/parallelsugar')
if(class(X) == "data.frame") {if(all(c("sound.files", "selec",
"start", "end") %in% colnames(X)))
{
start <- as.numeric(unlist(X$start))
end <- as.numeric(unlist(X$end))
sound.files <- as.character(unlist(X$sound.files))
selec <- as.character(unlist(X$selec))
} else stop(paste(paste(c("sound.files", "selec", "start", "end")[!(c("sound.files", "selec",
"start", "end") %in% colnames(X))], collapse=", "), "column(s) not found in data frame"))
} else stop("X is not a data frame")
#if there are NAs in start or end stop
if(any(is.na(c(end, start)))) stop("NAs found in start and/or end")
#if end or start are not numeric stop
if(all(class(end) != "numeric" & class(start) != "numeric")) stop("'end' and 'selec' must be numeric")
#if any start higher than end stop
if(any(end - start<)) stop(paste("The start is higher than the end in", length(which(end - start<)), "case(s)"))
#if any selections longer than 20 secs stop
if(any(end - start>)) stop(paste(length(which(end - start>)), "selection(s) longer than 20 sec"))
options( show.error.messages = TRUE)
#if bp is not vector or length!=2 stop
if(!is.vector(bp)) stop("'bp' must be a numeric vector of length 2") else{
if(!length(bp) == ) stop("'bp' must be a numeric vector of length 2")}
#return warning if not all sound files were found
fs <- list.files(path = getwd(), pattern = ".wav$", ignore.case = TRUE)
if(length(unique(sound.files[(sound.files %in% fs)])) != length(unique(sound.files)))
cat(paste(length(unique(sound.files))-length(unique(sound.files[(sound.files %in% fs)])),
".wav file(s) not found"))
#count number of sound files in working directory and if stop
d <- which(sound.files %in% fs)
if(length(d) == ){
stop("The .wav files are not in the working directory")
} else {
start <- start[d]
end <- end[d]
selec <- selec[d]
sound.files <- sound.files[d]
}
# If parallel is not numeric
if(!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1")
if(any(!(parallel %% == ),parallel < )) stop("'parallel' should be a positive integer")
# If parallel was called
if(parallel > )
{ options(warn = -)
if(all(Sys.info()[] == "Windows",requireNamespace("parallelsugar", quietly = TRUE) == TRUE))
lapp <- function(X, FUN) parallelsugar::mclapply(X, FUN, mc.cores = parallel) else
if(Sys.info()[] == "Windows"){
cat("Windows users need to install the 'parallelsugar' package for parallel computing (you are not doing it now!)")
lapp <- pbapply::pblapply} else lapp <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores = parallel)} else lapp <- pbapply::pblapply
options(warn = )
if(parallel == ) cat("Measuring acoustic parameters:")
x <- as.data.frame(lapp(:length(start), function(i) {
r <- tuneR::readWave(file.path(getwd(), sound.files[i]), from = start[i], to = end[i], units = "seconds")
b<- bp #in case bp its higher than can be due to sampling rate
if(b[] > ceiling(r@samp.rate/) - ) b[] <- ceiling(r@samp.rate/) -
#frequency spectrum analysis
songspec <- seewave::spec(r, f = r@samp.rate, plot = FALSE)
analysis <- seewave::specprop(songspec, f = r@samp.rate, flim = c(, /), plot = FALSE)
#save parameters
meanfreq <- analysis$mean/
sd <- analysis$sd/
median <- analysis$median/
Q25 <- analysis$Q25/
Q75 <- analysis$Q75/
IQR <- analysis$IQR/
skew <- analysis$skewness
kurt <- analysis$kurtosis
sp.ent <- analysis$sh
sfm <- analysis$sfm
mode <- analysis$mode/
centroid <- analysis$cent/
#Frequency with amplitude peaks
peakf <- #seewave::fpeaks(songspec, f = r@samp.rate, wl = wl, nmax = , plot = FALSE)[, ]
#Fundamental frequency parameters
ff <- seewave::fund(r, f = r@samp.rate, ovlp = , threshold = threshold,
fmax = , ylim=c(, /), plot = FALSE, wl = wl)[, ]
meanfun<-mean(ff, na.rm = T)
minfun<-min(ff, na.rm = T)
maxfun<-max(ff, na.rm = T)
#Dominant frecuency parameters
y <- seewave::dfreq(r, f = r@samp.rate, wl = wl, ylim=c(, /), ovlp = , plot = F, threshold = threshold, bandpass = b * , fftw = TRUE)[, ]
meandom <- mean(y, na.rm = TRUE)
mindom <- min(y, na.rm = TRUE)
maxdom <- max(y, na.rm = TRUE)
dfrange <- (maxdom - mindom)
duration <- (end[i] - start[i])
#modulation index calculation
changes <- vector()
for(j in which(!is.na(y))){
change <- abs(y[j] - y[j + ])
changes <- append(changes, change)
}
if(mindom==maxdom) modindx<- else modindx <- mean(changes, na.rm = T)/dfrange
#save results
return(c(duration, meanfreq, sd, median, Q25, Q75, IQR, skew, kurt, sp.ent, sfm, mode,
centroid, peakf, meanfun, minfun, maxfun, meandom, mindom, maxdom, dfrange, modindx))
}))
#change result names
rownames(x) <- c("duration", "meanfreq", "sd", "median", "Q25", "Q75", "IQR", "skew", "kurt", "sp.ent",
"sfm","mode", "centroid", "peakf", "meanfun", "minfun", "maxfun", "meandom", "mindom", "maxdom", "dfrange", "modindx")
x <- data.frame(sound.files, selec, as.data.frame(t(x)))
colnames(x)[:] <- c("sound.files", "selec")
rownames(x) <- c(:nrow(x))
return(x)
}
processFolder <- function(folderName) {
# Start with empty data.frame.
data <- data.frame()
# Get list of files in the folder.
list <- list.files(folderName, '\\.wav')
# Add file list to data.frame for processing.
for (fileName in list) {
row <- data.frame(fileName, , , )
data <- rbind(data, row)
}
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Move into folder for processing.
setwd(folderName)
# Process files.
acoustics <- specan3(data, parallel=)
# Move back into parent folder.
setwd('..')
acoustics
}
gender <- function(filePath) {
if (!exists('genderBoosted')) {
load('model.bin')
}
# Setup paths.
currentPath <- getwd()
fileName <- basename(filePath)
path <- dirname(filePath)
# Set directory to read file.
setwd(path)
# Start with empty data.frame.
data <- data.frame(fileName, , , )
# Set column names.
names(data) <- c('sound.files', 'selec', 'start', 'end')
# Process files.
acoustics <- specan3(data, parallel=)
# Restore path.
setwd(currentPath)
predict(genderCombo, newdata=acoustics)
}
# Load data
data <- processFolder('test')
# Remove unused columns.
data$duration <- NULL
data$sound.files <- NULL
data$selec <- NULL
data$peakf <- NULL
# Remove rows containing NA's.
data <- data[complete.cases(data),]
# Write out csv dataset.
write.csv(data, file='test.csv', sep=',', row.names=F)
meelo
语音性别识别 - 使用R提取特征的更多相关文章
- 论文笔记:语音情感识别(三)手工特征+CRNN
一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...
- 论文笔记:语音情感识别(四)语音特征之声谱图,log梅尔谱,MFCC,deltas
一:原始信号 从音频文件中读取出来的原始语音信号通常称为raw waveform,是一个一维数组,长度是由音频长度和采样率决定,比如采样率Fs为16KHz,表示一秒钟内采样16000个点,这个时候如果 ...
- C++开发人脸性别识别教程(12)——加入性别识别功能
经过之前几篇博客的解说,我们已经成功搭建了MFC应用框架,并实现了主要的图像显示和人脸检測程序,在这篇博文中我们要向当中加入性别识别代码. 关于性别识别,之前已经专门拿出两篇博客的篇幅来进行解说.这里 ...
- 论文笔记:语音情感识别(五)语音特征集之eGeMAPS,ComParE,09IS,BoAW
一:LLDs特征和HSFs特征 (1)首先区分一下frame和utterance,frame就是一帧语音.utterance是一段语音,是比帧高一级的语音单位,通常指一句话,一个语音样本.uttera ...
- 论文笔记:语音情感识别(二)声谱图+CRNN
一:An Attention Pooling based Representation Learning Method for Speech Emotion Recognition(2018 Inte ...
- 基于人脸识别+IMDB-WIFI+Caffe的性别识别
本文用记录基于Caffe的人脸性别识别过程.基于imdb-wiki模型做finetune,imdb-wiki数据集合模型可从这里下载:https://data.vision.ee.ethz.ch/cv ...
- 图像物体检測识别中的LBP特征
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中 ...
- 基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...
- 卷积神经网络提取特征并用于SVM
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...
随机推荐
- 【BZOJ 4449】[Neerc2015]Distance on Triangulation 多边形分治结构
这题好神啊……正解方向是分治,据我所知的分治方法有:I.离线后直接对多边形以及所有的询问进行分治 II.建立多边形的分治结构(对于三角形来说类似线段树,对于对角线来说类似平衡树),然后每次在这个分治结 ...
- 服务器上的 Git - 在服务器上搭建 Git
http://git-scm.com/book/zh/v2/%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%B8%8A%E7%9A%84-Git-%E5%9C%A8%E6%9C%8D%E ...
- 用python + openpyxl处理excel(07+)文档 + 一些中文处理的技巧
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...
- Windows下的包管理器Chocolatey
参考文档: https://www.jianshu.com/p/831aa4a280e7 https://www.jianshu.com/p/abaa0e8c261f
- MyEclipse解决Launching xx on MyEclipse Tomcat has encountered a problem
单击工具栏Run,选中Run Configurations... 将MyEclipse Server Application里面的工程右击选择Delete就好了.
- Spring Boot + Swagger
前言: 在互联网公司, 微服务的使用者一般分为两种, 客户端和其他后端项目(包括关联微服务),不管是那方对外提供文档 让别人理解接口 都是必不可少的.传统项目中一般使用wiki或者文档, 修改繁琐,调 ...
- Idea工具常用技巧总结
转自:https://www.jianshu.com/p/131c2deb3ecf Idea常用技巧总结 1.无处不在的跳转 注:这里的快捷键是自己定义的,并非大家的都一样,可以通过findActio ...
- DES加密解密类
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.S ...
- 1.Spring揭秘--Ioc容器
1.Ioc即控制反转,假设一个类需要依赖另外一个类,在最初始的做法就是创建那个依赖类的对象,然后使用这个类提供的功能,如果创建这个依赖类的职责交给Ioc Service Provider去做,那么这就 ...
- zoj 3229 Shoot the Bullet(有源汇上下界最大流)
Shoot the Bullethttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3442 Time Limit: 2 Second ...