【分析】

  这个只是用来放模板。。【其实我还没完全懂的。。

迭代 代替 递归:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<complex>
#define Maxn 262145
#define pi acos(-1)
using namespace std; struct P
{
double x,y;
P() {x=y=;}
P(double x,double y):x(x),y(y){}
friend P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
friend P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
friend P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
}a[Maxn],b[Maxn]; int nn;
int R[Maxn];
void fft(P *a,int f)
{
for(int i=;i<nn;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=;i<nn;i<<=)
{
P wn(cos(pi/i),f*sin(pi/i));
for(int j=;j<nn;j+=i<<)
{
P w(,);
for(int k=;k<i;k++,w=w*wn)
{
P x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
}
int main()
{
freopen("a.in","r",stdin);
freopen("b.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=;i<=m;i++) scanf("%lf",&b[i].x);
int ll=;nn=;
while(nn<=n+m) ll++,nn<<=;
for(int i=;i<nn;i++) R[i]=(R[i>>]>>)|((i&)<<(ll-));
fft(a,);fft(b,);
for(int i=;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=n+m;i++) printf("%d ",(int)(a[i].x/nn+0.5));
return ;
}

2017-04-13 16:43:54

【UOJ 34】 #34. 多项式乘法 (FFT)的更多相关文章

  1. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  2. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  3. @总结 - 1@ 多项式乘法 —— FFT

    目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...

  4. 【learning】多项式乘法&fft

    [吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...

  5. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  6. 【UOJ 34】 多项式乘法 (FFT)

    [题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...

  7. UOJ 34 多项式乘法 FFT 模板

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  8. 【UOJ】【34】多项式乘法

    快速傅里叶变换模板题 算法理解请看<算法导论>第30章<多项式与快速傅里叶变换>,至于证明插值唯一性什么的看不懂也没关系啦-只要明白这个过程是怎么算的就ok. 递归版:(425 ...

  9. 【UOJ #34】多项式乘法

    http://uoj.ac/problem/34 看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_ 首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满 ...

  10. [HNOI2017] 礼物 - 多项式乘法FFT

    题意:给定两个 \(n\) 元环,环上每个点有权值,分别为 \(x_i, y_i\).定义两个环的差值为 \[\sum_{i=0}^{n-1}{(x_i-y_i)^2}\] 可以旋转其中的一个环,或者 ...

随机推荐

  1. [ERROR] Too many connections 尚未解决

    [ERROR] - com.alibaba.druid.support.logging.Log4j2Impl.error(Log4j2Impl.java:53) - create connection ...

  2. discuz2.5登录后台闪退的解决办法

    今天突然发现discuz2.5论坛后台进不去,开始以为密码错了,但发现登录后也是闪退.我试着清除浏览器cookie,也换了其他浏览器也没有用,还是上网找找吧! discuz2.5进入后台闪退的原因: ...

  3. php查询mysql返回大量数据结果集导致内存溢出的解决方法

    web开发中如果遇到php查询mysql返回大量数据导致内存溢出.或者内存不够用的情况那就需要看下MySQL C API的关联,那么究竟是什么导致php查询mysql返回大量数据时内存不够用情况? 答 ...

  4. perl6 struct2-045 EXP

    测试站点: http://www.yutian.com.cn/index.action http://www.hjxzyzz.com:8088/pfw/login.action 代码如下: use v ...

  5. angular 最大字数限制

    js可以通过onkeyup onkeydown判断当前节点字数. angular可以通过监听的方式: $scope.input = {//初始化,避免ng-model绑定取不到值 MaxBT:'', ...

  6. 记一个多线程使用libevent的问题

    前段时间使用libevent网络库实现了一个游戏服务器引擎,在此记录下其中遇到的一个问题. 我在设计服务器上选择把逻辑和网络分线程,线程之间通信使用队列.但是这样做会有个问题: 当逻辑线程想要主动的发 ...

  7. HDU 6195 2017沈阳网络赛 公式

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6195 题意:有M个格子,有K个物品.我们希望在格子与物品之间连数量尽可能少的边,使得——不论是选出M个 ...

  8. vsts 自动部署到Azure

    如果要部署到中国区的Azure ,请先阅读 http://www.cnblogs.com/cnryb/p/7867275.html 前置条件,我把代码托管在vsts(放在GitHub上也没问题,这里不 ...

  9. 使用Git Wiki 管理文档时,文档编写的基本用法

    自己初次接触GitLab,通过百度和自己查找资料,了解了一部分.在自己的工作中,主要用到GitLab的Wiki文档版本管理能力.我总结了一小部分文本编辑需要用到的东西. 一.文本的排版 为了让文本/文 ...

  10. Butter Knife:一个安卓视图注入框架

    Butter Knife:一个安卓视图注入框架 2014年5月8日 星期四 14:52 官网: http://jakewharton.github.io/butterknife/ GitHub地址: ...