题目链接:戳我

换根DP

由于蒟蒻不会做这个题,所以参考了大佬。

本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点、连两个子节点,一种是作为关键节点、一个连子节点一个连父亲节点。

然后有一个不换根的树形DP,但是正确性emmm尚待商榷。

对于一个这样的图——

我们可以发现,如果想要连起来的话,我们需要不止一个根节点,而这与题目中提到的每次加入一个节点不符。

所以我们考虑换根。这样的话我们发现,就只有两种情况了——一种是该节点不作为关键节点,一种是作为关键节点、连父亲和儿子。

设\(f[i][0]\)表示对于以i为根的子树,该节点不作为关键节点的最大收益。

设\(f[i][1]\)表示对于以i为根的子树,该节点作为关键节点、连父节点和子节点的最大收益。

\(f[i][0]=max(f[i][0],f[i][1]+edge[i].dis)\)

\(f[i][1]=max(f[i][1],f[i][0]-max(dp[v][0],dp[v][1]+dis)+dis+dp[v][0])\)

之后维护一个\((f[i][0]-max(dp[v][0],dp[v][1]+dis)+dis+dp[v][0])\)的前后缀即可。

具体看代码qwqwq

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<algorithm>
#define MAXN 200010
#define INF 0x3f3f3f3f
using namespace std;
int n,t,ans;
int head[MAXN],f[MAXN][2];
vector<int>son[MAXN],pef[MAXN],suf[MAXN],dis[MAXN];
struct Edge{int nxt,to,dis;}edge[MAXN<<1];
inline void add(int from,int to,int dis)
{
edge[++t].nxt=head[from],edge[t].to=to,edge[t].dis=dis,head[from]=t;
edge[++t].nxt=head[to],edge[t].to=from,edge[t].dis=dis,head[to]=t;
}
inline int dfs1(int x,int pre)
{
f[x][0]=0,f[x][1]=-INF;
for(int i=head[x];i;i=edge[i].nxt)
{
int v=edge[i].to;
if(v==pre) continue;
son[x].push_back(v),dis[x].push_back(edge[i].dis);
}
for(int i=0;i<son[x].size();i++)
{
int v=son[x][i],dist=dis[x][i];
dfs1(v,x);
f[x][0]+=max(f[v][0],f[v][1]+dist);
pef[x].push_back(f[v][0]-max(f[v][0],f[v][1]+dist)+dist);
suf[x].push_back(f[v][0]-max(f[v][0],f[v][1]+dist)+dist);
}
for(int i=0;i<son[x].size();i++) f[x][1]=max(f[x][1],f[x][0]+pef[x][i]);
for(int i=1;i<son[x].size();i++) pef[x][i]=max(pef[x][i],pef[x][i-1]);
for(int i=son[x].size()-2;i>=0;i--) suf[x][i]=max(suf[x][i],suf[x][i+1]);
}
inline void dfs2(int x,int f0,int f1,int dist)
{
f[x][0]+=max(f0,f1+dist);
f[x][1]+=max(f0,f1+dist);
f[x][1]=max(f[x][1],f[x][0]+f0-max(f0,f1+dist)+dist);
ans=max(ans,f[x][0]);
for(int i=0;i<son[x].size();i++)
{
int v=son[x][i];
int cur0=f[x][0]-max(f[v][0],f[v][1]+dis[x][i]);
int delta=f0-max(f0,f1+dist)+dist;
if(i!=0) delta=max(delta,pef[x][i-1]);
if(i!=son[x].size()-1) delta=max(delta,suf[x][i+1]);
dfs2(v,cur0,cur0+delta,dis[x][i]);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dfs1(1,0);
dfs2(1,0,-INF,-INF);
printf("%d\n",ans);
return 0;
}

APIO2014 连珠线的更多相关文章

  1. 【BZOJ3677】[Apio2014]连珠线 换根DP

    [BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...

  2. [Bzoj3677][Apio2014]连珠线(树形dp)

    3677: [Apio2014]连珠线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 434  Solved: 270[Submit][Status] ...

  3. 【LG3647】[APIO2014]连珠线

    [LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...

  4. 题解 [APIO2014]连珠线

    题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...

  5. bzoj3677: [Apio2014]连珠线

    Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...

  6. bzoj 3677: [Apio2014]连珠线【树形dp】

    参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...

  7. Luogu P3647 [APIO2014]连珠线

    题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...

  8. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

  9. 洛谷 P3647 [APIO2014]连珠线(换根 dp)

    题面传送门 题意: 桌子上有 \(1\) 个珠子,你要进行 \(n-1\) 次操作,每次操作有以下两种类型: 拿出一个新珠子,并选择一个桌子上的珠子,在它们之间连一条红线 选择两个由红线相连的珠子 \ ...

随机推荐

  1. python安装库(Windows下)

    首先确保安装了pip,并且pip也加入了系统path路径: pip下载:https://pypi.python.org/pypi/pip#downloads 下载Python对应的包:(http:// ...

  2. webService 入门级

    1,建立一个项目名为Trans,web项目,普通java项目都可以!这里我们就以简单的java应用程序来作为示范吧! 1.1在建立一个方法属于com.shu.function.Function类: / ...

  3. ie8、9 post 跨域

    //显示浮层postAjax:function(url,param,callback){ var loadScore = layer_.load(1,{shade: [0.8,'#393D49']}) ...

  4. 软件工程第二次作业(Android Studio利用Junit进行单元测试)

    一.开发工具的安装和运行 1.安装 由于我的电脑之前就安装好了Android Studio,就不再重装了.在这里就给出几条安装过程中需要注意的地方吧: 安装包最好在官网下载已经带有Android SD ...

  5. 104. Maximum Depth of Binary Tree (Tree; DFS)

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  6. ubuntu server 12.04 jdk,ssh及hadoop配置

    我是在32位的系统下配置的,所以在下载安装文件时候要注意. 第一步:下载并配置JDK 1.下载jdk,这里下载的是jdk1.7.0_65版本的,命令如下 $ wget http://download. ...

  7. Redis学习(1)——下载与配置[转]

    Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMware主 ...

  8. [C++] c Struct VS c++ Struct

    c Struct c语言生命变量要加上struct c语言结构体内部不能有函数 C语言结构体没有共有,私有和继承

  9. Luogu 4725 【模板】多项式对数函数

    继续补全模板. 要求 $$g(x) = ln f(x)$$ 两边求导, $$g'(x) = \frac{f'(x)}{f(x)}$$ 然后左转去把多项式求导和多项式求逆的模板复制过来,就可以计算出$g ...

  10. code1085 数字游戏

    划分dp 把环变链(读入4 3 -1 2变成4 3 -1 2 4 3 -1 2) 设dp[i][j][k]为把i~j分成k份,各部分内的数字相加,相加所得的k个结果对10取模后再相乘,最终得到的一个数 ...