51nod-迷宫问题(Dijkstra算法)
关于Dijkstra算法的博文
http://www.cnblogs.com/skywang12345/p/3711512.html#anchor2
节点集合V = {}空集合,距离初始化。
节点编号0..n – 1, 起点编号0≤ s < n。
其他 d[i] = ∞, 0 ≤ i < n, i ≠ s。
找到节点i 不属于 V,且d[i]值最小的节点i。
V = V + i
对所有满足j V的边(i, j) 更新d[j] = min(d[j] , d[i] + w(i, j))。




{1 F} | {16 E} | {17 B}


{12 B} | {15 D} | {16 E} | {17 B} | {34 E}


将2条的权值加上A到B的最短路径12,加入优先队列。此时队列中的元素为:
{15 D} | {16 E} | {17 B} | {17 D} | {18 C} | {34 E}
取出队列中最小的元素,{15 D},D点是一个未处理过的点,因此得到了A点到D点的最短距离。更新距离,变为:


将2条的权值加上A到D的最短路径15,加入优先队列。此时队列中的元素为:
{16 E} | {17 B} | {17 D} | {18 C} | {19 E} | {25 C} | {34 E}
取出队列中最小的元素,{16 E},E点是一个未处理过的点,因此得到了A点到E点的最短距离。更新距离,变为:
 
 
取出队列中最小的元素,{17 B},B点是一个已经处理过的点,因此继续后面的处理。
取出队列中最小的元素,{18 C},C点是一个未处理过的点,因此得到了A点到C点的最短距离。更新距离,变为:

i V, d[i] = min{d[x] + w(x, i), x V}
我们证明节点i要进入集合V时,d[i]确实是s到i的最短路长度 。
归纳证明: 起初 d[s] = 0满足条件。
其中s..x全部在V中, y V。根据归纳假设d[x]是s到x的最短路长度。
而且因为dijkstra选择最小的d加入,所以有d[y] ≥ d[i] 。
于是有路径P的长度, length(P) ≥ d[x] + w(x, y) + length(y..i) ≥ d[y] + length(y..i) ≥ d[y] ≥ d[i]。
从而d[i]也是最短路的长度。得证。
Dijkstra算法
你来到一个迷宫前。该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数。还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间。游戏规定了你的起点和终点房间,你首要目标是从起点尽快到达终点,在满足首要目标的前提下,使得你的得分总和尽可能大。现在问题来了,给定房间、道路、分数、起点和终点等全部信息,你能计算在尽快离开迷宫的前提下,你的最大得分是多少么?
第一行4个整数n (<=500), m, start, end。n表示房间的个数,房间编号从0到(n - 1),m表示道路数,任意两个房间之间最多只有一条道路,start和end表示起点和终点房间的编号。
第二行包含n个空格分隔的正整数(不超过600),表示进入每个房间你的得分。
再接下来m行,每行3个空格分隔的整数x, y, z (0<z<=200)表示道路,表示从房间x到房间y(双向)的道路,注意,最多只有一条道路连结两个房间, 你需要的时间为z。
输入保证从start到end至少有一条路径。
一行,两个空格分隔的整数,第一个表示你最少需要的时间,第二个表示你在最少时间前提下可以获得的最大得分。
3 2 0 2
1 2 3
0 1 10
1 2 11
21 6
大佬的代码
#include <iostream>
#include <math.h>
#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
using namespace std;
const int MAX = 550;
int co[MAX], dist[MAX], g[MAX][MAX],low[MAX];
int n, m, s, e;
bool vis[MAX];
void dijistra(){
for(int i = 0; i < n; i ++){
dist[i] = INF;
}
memset(vis,0,sizeof(vis));
memset(low,0,sizeof(vis));
dist[s] = 0;
low[s] = co[s];
for(int i = 1; i <= n; i ++){
int mins = INF, MAx = 0, pos;
for(int j = 0; j < n; j ++){
if(!vis[j] && dist[j] < mins){
pos = j;
mins = dist[j];
MAx = co[j];
}
if(!vis[j] && dist[j] == mins && MAx < low[j]){
pos = j;
MAx = low[j];
}
}
if(mins == INF)break;
vis[pos] = true;
for(int j = 1; j <= n; j ++){
if(!vis[j] && dist[j] > dist[pos] + g[pos][j]){
dist[j] = dist[pos] + g[pos][j];
low[j] = low[pos] + co[j];
}
if(!vis[j] && low[j] < low[pos] + co[j] && dist[j] == dist[pos]+g[pos][j]){
low[j] = low[pos] + co[j];
}
}
}
}
int main(){
scanf("%d%d%d%d",&n,&m,&s,&e);
for(int i = 0; i < n; i ++){
for(int j = 0; j < n; j ++)
g[i][j] = (i==j)?0:INF;
}
for(int i = 0; i < n; i ++) scanf("%d",&co[i]);
for(int i = 0; i < m; i ++) {
int u, v, w;
scanf("%d%d%d",&u,&v,&w);
if(g[u][v] > w) {
g[u][v] = g[v][u] = w;
}
}
dijistra();
printf("%d %d\n",dist[e],low[e]);
return 0;
}
51nod-迷宫问题(Dijkstra算法)的更多相关文章
- Dijkstra算法详细(单源最短路径算法)
		介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ... 
- 图论篇3——最短路径 Dijkstra算法、Floyd算法
		最短路径 问题背景:地图上有很多个城市,已知各城市之间距离(或者是所需时间,后面都用距离了),一般问题无外乎就是以下几个: 从某城市到其余所有城市的最短距离[单源最短路径] 所有城市之间相互的最短距离 ... 
- 求两点之间最短路径-Dijkstra算法
		Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ... 
- Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解
		/* Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次. 要知道,我们从队列头部找到的都是到 已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其 ... 
- 关于dijkstra算法的一点理解
		最近在准备ccf,各种补算法,图的算法基本差不多看了一遍.今天看的是Dijkstra算法,这个算法有点难理解,如果不深入想的话想要搞明白还是不容易的.弄了一个晚自习,先看书大致明白了原理,就根据书上的 ... 
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford  & 单源最短路SPFA)
		关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ... 
- Dijkstra算法(二)之 C++详解
		本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ... 
- Dijkstra算法(一)之 C语言详解
		本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ... 
- 最短路问题Dijkstra算法
		Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ... 
随机推荐
- mesos in docker
			docker pull mesosphere/mesos-master:1.4.0 docker pull mesosphere/mesos-slave:1.4.0 在Docker中运行Mesos的推 ... 
- WWW.LoadFromCacheOrDownload
			[WWW.LoadFromCacheOrDownload] static WWWLoadFromCacheOrDownload(string url, int version, uint crc = ... 
- java求最长公共子串的长度
			1这道题目就是给定两个字符串,然后求这两个字符串的最长公共子串的最大长度,假设我的f()方法是来求两个字符串的最大公共子串,从头开始逐一比较,如果相等,则 继续调用这个方法,使得递归的长度+1,如果不 ... 
- Swiper thymeleaf
			html页面: <div class="swiper-container swiper_tjzt"> <div class="swiper-wrappe ... 
- SpringBoot31 整合SpringJDBC、整合MyBatis、利用AOP实现多数据源
			一.整合SpringJDBC 1 JDBC JDBC(Java Data Base Connectivity,Java 数据库连接)是一种用于执行 SQL 语句的 Java API,可以为多种关系数 ... 
- 269. Alien Dictionary火星语字典(拓扑排序)
			[抄题]: There is a new alien language which uses the latin alphabet. However, the order among letters ... 
- cacti监控mssql 2005运行资源情况
			概述:SQL Server2000\2005\2008本身不支持snmp,使用cacti监控mssql,必须通过php连接mssql来获取SQL 2005性能计算器的值. 操作步骤: 1.php连接m ... 
- ServiceStack.redis用法
			using System; using System.Collections.Generic; using ServiceStack.Redis; namespace SysBuild { class ... 
- [C++] advanced reference
			advanced reference 
- Red Hat 6.5 nfs服务的搭建
			nfs服务是实现Linux和Linux之间的文件共享,nfs服务的搭建比较简单. 现在介绍如何在红帽6.5系统中搭建nfs服务. 1.关闭selinux服务 如果已经关闭该服务的可以直接跳过该步骤. ... 
