题目描述

对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:

{3} 和 {1,2}

这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:

{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。

输入输出格式

输入格式:

输入文件只有一行,且只有一个整数N

输出格式:

输出划分方案总数,如果不存在则输出0。

输入输出样例

输入样例#1:

7
输出样例#1:

4

说明

翻译来自NOCOW

USACO 2.2

代码

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std; int f[][];//f[i][j]表示i分成两组差为j的分法
int N; int main(){
// freopen("01.in","r",stdin);
scanf("%d",&N);
f[][]=f[][]=;f[][]=;
for(int i=;i<=N;i++){
for(int j=;j<=(i*(i+)/);j++){
if(j+i<=(i*(i+)/)) f[i][j]+=f[i-][j+i];
if(j>=i) f[i][j]+=f[i-][j-i];
if(j!=) f[i][j]+=f[i-][i-j];
}
} printf("%d",f[N][]);
fclose(stdin);fclose(stdout);return ;
}

很明显这是一道DP,自己思考一下Line 18 19 20吧

转载另外一种解法:


题解by:redbag

原题解地址:http://redbag.duapp.com/?p=1197

n个数的总和为sum:=n*(n+1)shr 1,当且仅当sum为偶数的时候才有解,sum为奇数时直接输出0并且退出程序;然后每个数只有2种情况,放在第一个集合和不放在第一个集合。于是就是简单的01背包问题了。简单的分析见图

 #include<set>
#include<map>
#include<list>
#include<queue>
#include<stack>
#include<string>
#include<math.h>
#include<time.h>
#include<vector>
#include<bitset>
#include<memory>
#include<utility>
#include<stdio.h>
#include<sstream>
#include<iostream>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#define LL unsigned long long
using namespace std;
int sum/*1~n的和*/,n;
int f[][];
int i,j;
int main()
{
freopen("subset.in","r",stdin);
freopen("subset.out","w",stdout);
scanf("%d",&n);
sum=(n*(n+))/;//算出1~n的和。
if (sum%==)//仅当sum为偶数的时候才有解
{
printf("0\n");//因为分成的2份和要相等
return ;
}
f[][]=;//1中取任意个数的数使和为1的情况
f[][]=;//1中取任意个数的数使和为0的情况
for (i=;i<=n;i++)//1的情况已经算完了,所以从2开始
{
for (j=;j<=sum;j++)
{
if (j>i)//有取这个数和不取两种情况
f[i][j]=f[i-][j]+f[i-][j-i];
else f[i][j]=f[i-][j];//只能不取了
}
}
printf("%d\n",f[n][sum/]);
return ;
}

原来这只是一个辣么简单的背包,我想得。。。。。。。也太复杂了吧

洛谷 P1466 集合 Subset Sums Label:DP的更多相关文章

  1. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  2. 洛谷P1466 集合 Subset Sums_01背包水题

    不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...

  3. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  4. P1466 集合 Subset Sums(01背包求填充方案数)

    题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...

  5. 洛谷P1466集合——背包

    题目:https://www.luogu.org/problemnew/show/P1466 水题,注意开long long; 代码如下: #include<iostream> #incl ...

  6. [LUOGU] P1466 集合 Subset Sums

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  7. P1466 集合 Subset Sums 搜索+递推+背包三种做法

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  8. TYVJ P1045 &&洛谷 1388 最大的算式 Label:dp

    描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大.因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号.例 ...

  9. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

随机推荐

  1. python 解压 压缩包

    转 http://m.blog.csdn.net/blog/wice110956/26597179# 这里讨论使用Python解压如下五种压缩文件: .gz .tar  .tgz .zip .rar ...

  2. TKT中文编程语言简介

    TKT中文编程语言简介 TKT语言是新型的类似自然语言的汉语编程语言. 它是基于新的语言设计思想创造的语言,和现存的易语言.习语言.O语言.汉编等中文编程语言没有关系. TKT语言特点一: 中文编程 ...

  3. github with msysgit:配置SSH Key

    Step 1: Check for SSH keys First, we need to check for existing ssh keys on your computer. Open up G ...

  4. pdfbox加载pdf时遇到wrappedioexception报错处理方式

    现在一个项目要对pdf做处理.由于其中一个pdf约为80M左右,用pdfbox读取pdf时遇到了wrappedioexception错误.监控得到说内存不足.于是请教项目经理.他告诉我在Open De ...

  5. 阿里云部署nodejs服务器(windows)

    花了大半个月做的网站终于要上线了,周围的同学们很多都在使用阿里云的服务器,我也入手了一台.考虑到自己不是很适应ubuntu的命令行界面,于是买了个windows的,上网搜了一下,似乎都是用linux来 ...

  6. .NET WEB项目的调试发布相关

    最近接触了.NET WEB项目,调试的时候因为没配置好文件浪费了些时间,特此记录一下相关配置,以后备用 如果IIS的基目录指向了别处,在build以后必须要发布,其实就是把最新的程序更新到IIS的基目 ...

  7. markdown简介

    欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接 ...

  8. $_session (应用)

    登录: 封装类(用于连接数据库)代码中创建一个对象最好可以重复使用 <?php class DBDA { public $host="localhost"; public $ ...

  9. java实现记住密码功能(利用cookie)

    <br> <input type="text" id="userName" name="userName" value=& ...

  10. win7下cmd常用命令

    当在win7下执行命令出现右图状况 状况下可以采用鼠标放在指定的文件夹然后按shilt+鼠标右键可以出现下图的界面直接在此处打开cmd