bzoj 2154
收获:
1、当一个东西的取值范围很小时,或者感觉它很麻烦时,就枚举它
2、熟悉mobius函数、euler函数的和函数,以及euler函数用mobius函数的表示。
3、下取整分块理解更深了。
/**************************************************************
Problem: 2154
User: idy002
Language: C++
Result: Accepted
Time:5584 ms
Memory:157916 kb
****************************************************************/ #include <cstdio>
#include <iostream>
#define M 20101009
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], ptot;
dnt mds[]; void init( int n ) {
mu[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
isnot[i*prm[j]] = true;
if( i%prm[j]== ) {
mu[i*prm[j]] = ;
break;
}
mu[i*prm[j]] = -mu[i];
}
}
for( dnt d=; d<=n; d++ ) {
mds[d] = (mu[d]*d*d)%M;
mds[d] += mds[d-];
if( mds[d]>=M ) mds[d]-=M;
if( mds[d]< ) mds[d]+=M;
}
} inline dnt S( dnt x, dnt y ) {
return (((+x)*x/%M)*(((+y)*y)/%M)%M);
}
dnt F( dnt x, dnt y ) {
if( x>y ) swap(x,y);
dnt rt = ;
for( dnt d=; d<=x; d++ ) {
dnt dd = min( x/(x/d), y/(y/d) );
rt += S(x/d,y/d) * (mds[dd]-mds[d-]) % M;
if( rt< ) rt += M;
if( rt>=M ) rt -= M;
d = dd;
}
return rt;
}
dnt calc( dnt n, dnt m ) {
if( n>m ) swap(n,m);
dnt rt = ;
for( dnt d=; d<=n; d++ ) {
dnt dd=min( n/(n/d), m/(m/d) );
rt += ((d+dd)*(dd-d+)/ % M) * F( n/d, m/d ) % M;
if( rt< ) rt+=M;
if( rt>=M ) rt-=M;
d = dd;
}
return rt;
}
int main() {
int n, m;
scanf( "%d%d", &n, &m );
if( n>m ) swap(n,m);
init(n);
printf( "%lld\n", calc(n,m) );
}
bzoj 2154的更多相关文章
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){ ...
- bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- react CRA antd 按需加载配置 lessloader
webpack配置 webpack.config.dev.js, webpack.config.prod同理. 'use strict'; const autoprefixer = require(' ...
- cookie知识点概述
cookie是什么 这个讲起来很简单,了解http的同学,肯定知道,http是一个不保存状态的协议,什么叫不保存状态,就是一个服务器是不清楚是不是同一个浏览器在访问他,在cookie之前,有另外的技术 ...
- Javascript装饰器的妙用
最近新开了一个Node项目,采用TypeScript来开发,在数据库及路由管理方面用了不少的装饰器,发觉这的确是一个好东西.装饰器是一个还处于草案中的特性,目前木有直接支持该语法的环境,但是可以通过 ...
- linux设置时区同步时间
linux设置时区同步时间 一.运行tzselect sudo tzselect 在这里我们选择亚洲 Asia,确认之后选择中国(China),最后选择北京(Beijing) 如图: 二.复制文件 ...
- (转)USB 基本知识
USB的重要关键字: 1.端点:位于USB设备或主机上的一个数据缓冲区,用来存放和发送USB的各种数据,每一个端点都有惟一的确定地址,有不同的传输特性(如输入端点.输出端点.配置端点.批量传输端点) ...
- ACM International Collegiate Programming Contest World Finals 2014
ACM International Collegiate Programming Contest World Finals 2014 A - Baggage 题目描述:有\(2n\)个字符摆在编号为\ ...
- 在ubuntu 上安装pycharm
1.首先在官网下载pycharm并进行提取,将提取的文件夹放在/usr下面(或者任意位置) 2.然后vi /etc/hosts 编辑 将0.0.0.0 account.jetbrains.com添加到 ...
- IndexWriterConfig的各个配置项说明(转)
1.Analyzer:分析器 2.matchVersion:所用Lucene的版本 3.ramBufferSizeMB:随机内存 默认为16M. 用于控制buffer索引文档的内存上限,如果buffe ...
- python_xlsxwriter模块
1.workbook类 add_worksheet 用于添加一个新的工作表,sheetname为工作表名称,默认是sheet1,例如: worksheet = workbook.add_workshe ...
- Mariadb 10.2中的json使用及应用场景思考
-- 创建示例表DROP TABLE IF EXISTS `t_base_user`;CREATE TABLE `t_base_user` ( `USER_ID` char(36) CHARACT ...