收获:

  1、当一个东西的取值范围很小时,或者感觉它很麻烦时,就枚举它

  2、熟悉mobius函数、euler函数的和函数,以及euler函数用mobius函数的表示。

  3、下取整分块理解更深了。

 /**************************************************************
Problem: 2154
User: idy002
Language: C++
Result: Accepted
Time:5584 ms
Memory:157916 kb
****************************************************************/ #include <cstdio>
#include <iostream>
#define M 20101009
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], ptot;
dnt mds[]; void init( int n ) {
mu[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
isnot[i*prm[j]] = true;
if( i%prm[j]== ) {
mu[i*prm[j]] = ;
break;
}
mu[i*prm[j]] = -mu[i];
}
}
for( dnt d=; d<=n; d++ ) {
mds[d] = (mu[d]*d*d)%M;
mds[d] += mds[d-];
if( mds[d]>=M ) mds[d]-=M;
if( mds[d]< ) mds[d]+=M;
}
} inline dnt S( dnt x, dnt y ) {
return (((+x)*x/%M)*(((+y)*y)/%M)%M);
}
dnt F( dnt x, dnt y ) {
if( x>y ) swap(x,y);
dnt rt = ;
for( dnt d=; d<=x; d++ ) {
dnt dd = min( x/(x/d), y/(y/d) );
rt += S(x/d,y/d) * (mds[dd]-mds[d-]) % M;
if( rt< ) rt += M;
if( rt>=M ) rt -= M;
d = dd;
}
return rt;
}
dnt calc( dnt n, dnt m ) {
if( n>m ) swap(n,m);
dnt rt = ;
for( dnt d=; d<=n; d++ ) {
dnt dd=min( n/(n/d), m/(m/d) );
rt += ((d+dd)*(dd-d+)/ % M) * F( n/d, m/d ) % M;
if( rt< ) rt+=M;
if( rt>=M ) rt-=M;
d = dd;
}
return rt;
}
int main() {
int n, m;
scanf( "%d%d", &n, &m );
if( n>m ) swap(n,m);
init(n);
printf( "%lld\n", calc(n,m) );
}

bzoj 2154的更多相关文章

  1. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  2. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  3. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  4. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. BZOJ 2154 Crash的数字表格

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){    ...

  7. bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  8. 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

    2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...

  9. ●BZOJ 2154 Crash的数字表格

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...

随机推荐

  1. EasyUi组合条件分页查询

    1.引入css与js文件 <link rel="stylesheet" type="text/css" href="themes/default ...

  2. bootstrap带图标的按钮与图标做连接

    bootstrap通过引入bootstrap的JS与css文件,给元素添加class属性即可. 使用图标只需要加入一个span,class属性设置为对应的图标属性即可.图标对应的class属性可以参考 ...

  3. linux kernel make构建分析

    前言 之前对uboot的构建进行了分析,现在再对linux kernel的构建进行分析.几年前的确也分析过,但是只是停留在笔记层面,没有转为文章,这次下定决定来完善它. 环境 同样,采用的还是zynq ...

  4. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

  5. Python多态、鸭子类型

    一.多态 多态指的是一类事物有多种形态. 动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.ABCMeta): #同一类事物:动物 @abc.ab ...

  6. css给奇数行或偶数行添加指定样式

    odd表示奇数行,even表示偶数行; tr:nth-child(odd); .table-striped > tbody > tr:nth-child(odd) { background ...

  7. [Ext JS 4] MVC 应用程序框架

    前言 大型客户端应用程序总是很难编写,很难组织和很难维护.随着功能的增加和更多的开发人员加入项目,对项目的控制也越来越困难了.Ext JS 4 提供了一个新的应用程序框架帮助组织代码. 模型 - 一组 ...

  8. fail2ban安全设置

    1.先安装fail2ban服务包(这里我采用的是fail2ban-0.8.14.tar.gz) 2.解压安装包 cd /data/software tar xzf fail2ban-0.8.14.ta ...

  9. poj 2337(单向欧拉路的判断以及输出)

    Catenyms Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11648   Accepted: 3036 Descrip ...

  10. beego小技巧两则:通过命令行自定义端口和环境,url中带有中划线处理

    1,通过命令行自定义端口和环境 先用flag提取参数,如果要环境,就反向注进去, 如果是端口,就打到beego.Run函数里去. 2,在作router里的url解析时,如果URL中含有-中划线,用严格 ...