bzoj 2154
收获:
1、当一个东西的取值范围很小时,或者感觉它很麻烦时,就枚举它
2、熟悉mobius函数、euler函数的和函数,以及euler函数用mobius函数的表示。
3、下取整分块理解更深了。
/**************************************************************
Problem: 2154
User: idy002
Language: C++
Result: Accepted
Time:5584 ms
Memory:157916 kb
****************************************************************/ #include <cstdio>
#include <iostream>
#define M 20101009
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], ptot;
dnt mds[]; void init( int n ) {
mu[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
isnot[i*prm[j]] = true;
if( i%prm[j]== ) {
mu[i*prm[j]] = ;
break;
}
mu[i*prm[j]] = -mu[i];
}
}
for( dnt d=; d<=n; d++ ) {
mds[d] = (mu[d]*d*d)%M;
mds[d] += mds[d-];
if( mds[d]>=M ) mds[d]-=M;
if( mds[d]< ) mds[d]+=M;
}
} inline dnt S( dnt x, dnt y ) {
return (((+x)*x/%M)*(((+y)*y)/%M)%M);
}
dnt F( dnt x, dnt y ) {
if( x>y ) swap(x,y);
dnt rt = ;
for( dnt d=; d<=x; d++ ) {
dnt dd = min( x/(x/d), y/(y/d) );
rt += S(x/d,y/d) * (mds[dd]-mds[d-]) % M;
if( rt< ) rt += M;
if( rt>=M ) rt -= M;
d = dd;
}
return rt;
}
dnt calc( dnt n, dnt m ) {
if( n>m ) swap(n,m);
dnt rt = ;
for( dnt d=; d<=n; d++ ) {
dnt dd=min( n/(n/d), m/(m/d) );
rt += ((d+dd)*(dd-d+)/ % M) * F( n/d, m/d ) % M;
if( rt< ) rt+=M;
if( rt>=M ) rt-=M;
d = dd;
}
return rt;
}
int main() {
int n, m;
scanf( "%d%d", &n, &m );
if( n>m ) swap(n,m);
init(n);
printf( "%lld\n", calc(n,m) );
}
bzoj 2154的更多相关文章
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){ ...
- bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- 29、filter、map、reduce的作用?
通俗的说..都是用在一堆数据(比如一个列表)上.. map是用同样方法把所有数据都改成别的..字面意思是映射..比如把列表的每个数都换成其平方.. reduce是用某种方法依次把所有数据丢进去最后得到 ...
- 线程句柄和线程ID的区别
●CreateThread() API 用于创建线程. API 返回同时线程句柄,并通过参数得到线程标识符 (ID). 线程句柄有完全访问权创建线程对象. 运行线程时线程 ID 唯一标识线程在系统级别 ...
- php常用表单验证类用法实例
<?php /** * 页面作用:常用表单验证类 * 作 者:欣然随风 * QQ:276624915 */ class class_post { //验证是否为指定长度的字母/数字组合 func ...
- 工具===激活xmind 8
[下载jar包]: https://stormxing.oss-cn-beijing.aliyuncs.com/files/XMindCrack.jar 方法: 打开xmind 8 安装目录的 ...
- tracert和traceroute使用
Traceroute提取发 ICMP TTL到期消息设备的IP地址并作域名解析.每次 ,Traceroute都打印出一系列数据,包括所经过的路由设备的域名及 IP地址,三个包每次来回所花时间. 转自 ...
- VC RichEdit中英文关键字标红
最近需要做vc的RichEdit控件里的内容关键字标红,由于RichEdit的内容可能是中英文混合的,所以需要先转成Unicode,再用wcsstr函数找到关键字出现的位置,再用SetSel.SelS ...
- ThoughtWorks代码挑战——FizzBuzzWhizz游戏 通用高速版(C/C++ & C#)
最早看到这个题目是从@ 程序媛想事儿(Alexia) 的 最难面试的IT公司之ThoughtWorks代码挑战——FizzBuzzWhizz游戏 开始的,然后这几天陆陆续续有N个小伙伴发表了自己的文章 ...
- curl基于URL的文件传输工具
简介 cURL是一款开源的基于URL的文件传输工具,支持HTTP.HTTPS.FTP等协议,支持POST.cookie.认证.扩展头部.限速等特性. curl命令用途广泛,比如下载.发送http请求. ...
- DHCP简单配置
DHCP是什么? DHCP动态主机地址管理协议(Dynamic Host Configuration Protocol)是一种基于UDP协议且仅限用于局域网内使用的网络协议,最主要的用途是为局域网内部 ...
- 湖南省第十一届大学生程序设计竞赛:Internet of Lights and Switches(HASH+二分+异或前缀和)
Internet of Lights and Switches Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3 Solved: 3[Submit][ ...