[SDOI2015]约数个数和 --- 简单反演
求\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}d(ij)\)
不知道怎么讲.....
首先考虑\(d(ij)\)究竟是什么
首先,很自然地想到,既然是求\(ij\)的约数个数
因此就枚举\(i,j\)的约数
即\(d(ij) =\sum\limits_{x|i}\sum\limits_{y|j}...\)
注意到,我们不能重复地统计
我们从唯一分解得形式来考虑
因为多个质因子个和一个质因子的情况是一致的
因此我们考虑一个质因子
假设\(i = p^a, j = p^b\)且\(a\leq b\)
那么对于\(ij = p^{a+b}\),它的约数中质因子的取值范围为\([0,\;\;a+b]\)
如果我们能制定一种规则使得每个质因子取值只与一种\(i,j\)的质因子方案对应就好了
记当前枚举的\(ij\)约数为\(d\),且\(d = p^c = p^{a'+b'}\),其中\(a'\)来源于\(i\),\(b'\)来源于\(j\)
注意到,对于\([0,\;\;b]\),我们都可以只让\(a' = 0, b' = [0,b]\)来达到
而\([b+1,\;\;a+b]\),我们可以只让\(a'=[1,a], b' = b\)来达到
而\(b'=b\)相当于\(b'=0\)(枚举因子的特殊性)
也就是说\(a'=0\)或\(b'=0\)时对应一种情况
也就是只要判断\([gcd(i, j)=1]\)即可
因此\(d(ij) = \sum\limits_{x|i}\sum\limits_{y|j} [gcd(x, y)=1]\)
那么,简单地化下式子,答案就能出现
$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} d(ij) = \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{x|i} \sum\limits_{y|j} [gcd(x, y)=1] $
\(=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{x|i} \sum\limits_{y|j} \sum\limits_{d|x \;and \;d|y} \mu(d)\)
注意到,我们如果先枚举\(d\),相当于枚举它的倍数\(i, j\),再枚举\(i, j\)内有多少数含\(d\)因子
\(=\sum\limits_{d=1}^{min(n,m)} \mu(d)\sum\limits_{d|i}^{n} \sum\limits_{d|j}^{m} [n/ d][m/d]\)
预处理\(\mu\)以及某个神奇的函数就可以回答了
[SDOI2015]约数个数和 --- 简单反演的更多相关文章
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N∑j=1Md(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...
- BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...
- luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演
题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...
- [SDOI2015]约数个数和 莫比乌斯反演
---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...
- BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...
随机推荐
- 【CODEVS】1033 蚯蚓的游戏问题
[算法]网络流-最小费用最大流(费用流) [题解]与方格取数2类似 在S后添加辅助点S_,限流k 每条边不能重复走,限流1 #include<cstdio> #include<alg ...
- cookie、localstroage与sessionstroage的一些优缺点
1. Cookie 在前端开发中,尽量少用cooie,原因: (1) cookie限制大小,约4k左右,不适合存储业务数据,尤其是数据量较大的值: (2) cookie会每次随http请 ...
- Big O
评价一个计算机算法的效率时用到的方法我们称之为Big O(Order of [大约是]). 有序二分查找算法: 比如我们通过二分查找算法查找容器里的10个数据. 那么,我们需要查找一个数据时正常应该是 ...
- 16级第二周寒假作业E题
Home_W的位运算4 TimeLimit:2000MS MemoryLimit:128MB 64-bit integer IO format:%I64d Problem Description 给 ...
- numpy 简介
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- python基础===猴子补丁
>>> class test: def A(self, x, y): return x+y >>> t = test() >>> t.A(10,2 ...
- ProxySQL 故障
发现直接连接MGR节点是正常的,可以写入,但通过ProxySQL连接就无法show\select\insert 等 使用sysbench对ProxySQL报以下错误: FATAL: `thread_r ...
- Mysql存储之ORM框架SQLAlchemy(一)
上一篇我们说了mysql存储的原生语句方式,因为原生语句每次写都比较的复杂,所以这里我们说一种引用实体类的方式来操作数据库. 什么是ORM ORM技术:Object-Relational Mappin ...
- 011 CountDownLatch,CyclicBarrier和Semaphore
CountDownLatch(闭锁,有译倒计数,锁寄存): public class CountDownLatchTest { /*** 比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此 ...
- java版云笔记(四)
页面的笔记本加载完成了,接下来就是点击笔记本显示将笔记显示,同时把笔记在右边的编辑器中,同时把编辑后的笔记更新. 注:这个项目的sql文件,需求文档,需要的html文件,jar包都可以去下载,下载地址 ...