Suffix Trie

又称后缀Trie或后缀树。它与Trie树的最大不同在于,后缀Trie的字符串集合是由指定字符串的后缀子串构成的。比如、完整字符串"minimize"的后缀子串组成的集合S分别如下:

s1=minimize

s2=inimize

s3=nimize

s4=imize

s5=mize

s6=ize

s7=ze

s8=e

然后把这些子串的公共前缀作为内部结点构成一棵"minimize"的后缀树,如图所示,其中上图是Trie树的字符表示,下图是压缩表示。可见Suffic Trie是一种很适合操作字符串子串的数据结构。 它和PAT tree在这一点上类似。

Suffix Trie的创建

标准Tire树的每一个内部结点只有一个字符,也就是说公共前缀每一次只找一个。而Suffix Trie的公共前缀可以是多个字符,因此在创建Suffix Trie的时候,每插入一个后缀子串,就可能对内部结点造成一次分类。下面我们我们看一种后缀树构造算法。以"minimize"为例:

当插入子串时,发现叶子结点中的关键字与子串有公共前缀,则需要将该叶子结点分裂。如上图第3到4步。否则,重新创建一个叶子结点来存放后缀,如上图第1到2步。

Suffix Trie的子串查询

如果在后缀树T中查找子串P,我们需要这样的过程:

(1) 从根结点root出发,遍历所有的根的孩子结点:N1,N2,N3....

(2) 如果所有孩子结点中的关键字的第一个字符都和P的第一个字符不匹配,则没有这个子串,查找结束。

(3) 假如N3结点的关键字K3第一个字符与P的相同,则匹配K3和P。

若 K3.length>=P.length  并且K3.subString(0,P.length-1)=P,则匹配成功,否则匹配失败。

若 K3.length<=P.length  并且K3=P.subString(0, K3.length-1),则将子串P1=P.subString(K3.length, P.length); 即取出P中排除K3之后的子串。然后P1以N3为根结点继续重复(1)~(3)的步骤。直到匹配完P1的所有字符,则匹配成功。否则匹配失败。

查询效率:很显然,在上面的算法中。匹配成功正好比较了P.length次字符。而定位结点的孩子指针,和Trie情况类似,假如字母表数量为d。则查询效率为O(d*m),实际上,d是固定常数,如果使用Hash表直接定位,则d=1.

因此,后缀树查询子串P的时间复杂度为O(m),其中m为P的长度。

Suffix Trie的应用

标准Trie树只适合前缀匹配和全字匹配,并不适合后缀和子串匹配。而后缀树在这方面则非常合适。

另外后缀树也可以进行前缀匹配。 如果模式串P是字符串S的前缀的话,那么从根结点出发遍历后缀树,一定能够寻找到一条路径完全匹配完P。比如上图: 模式串P=“mini”,主串S="minimize"。P从根节点出发,首先匹配到结点mi,然后再匹配孩子结点nimize。直到P中所有的字符都找到为止。所以P是S的前缀。

我是天王盖地虎的分割线

参考:http://hxraid.iteye.com/blog/620414

后缀树(Suffix Trie)子串匹配结构的更多相关文章

  1. 后缀树(suffix tree)

    参考: 从前缀树谈到后缀树 后缀树 Suffix Tree-后缀树 字典树(trie树).后缀树 一.前缀树 简述:又名单词查找树,tries树,一种多路树形结构,常用来操作字符串(但不限于字符串), ...

  2. Suffix树,后缀树

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  3. 笔试算法题(40):后缀数组 & 后缀树(Suffix Array & Suffix Tree)

    议题:后缀数组(Suffix Array) 分析: 后缀树和后缀数组都是处理字符串的有效工具,前者较为常见,但后者更容易编程实现,空间耗用更少:后缀数组可用于解决最长公共子串问题,多模式匹配问题,最长 ...

  4. Trie树(代码),后缀树(代码)

    Trie树系列 Trie字典树 压缩的Trie 后缀树Suffix tree 后缀树--ukkonen算法 Trie是通过对字符串进行预先处理,达到加快搜索速度的算法.即把文本中的字符串转换为树结构, ...

  5. B树,B+树,红黑树应用场景AVL树,红黑树,B树,B+树,Trie树

    B B+运用在file system database这类持续存储结构,同样能保持lon(n)的插入与查询,也需要额外的平衡调节.像mysql的数据库定义是可以指定B+ 索引还是hash索引. C++ ...

  6. [BinaryTree] AVL树、红黑树、B/B+树和Trie树的比较

    转自:AVL树.红黑树.B/B+树和Trie树的比较 AVL树 最早的平衡二叉树之一.AVL是一种高度平衡的二叉树,所以通常的结果是,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应 ...

  7. AVL树,红黑树,B-B+树,Trie树原理和应用

    前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作 ...

  8. [转载]字典树(trie树)、后缀树

    (1)字典树(Trie树) Trie是个简单但实用的数据结构,通常用于实现字典查询.我们做即时响应用户输入的AJAX搜索框时,就是Trie开始.本质上,Trie是一颗存储多个字符串的树.相邻节点间的边 ...

  9. 后缀树(Suffix Tree)

          问题描述:               后缀树(Suffix Tree)   参考资料: http://www.cppblog.com/yuyang7/archive/2009/03/29 ...

随机推荐

  1. JAVA编程思想读书笔记(四)--对象的克隆

    接上篇JAVA编程思想读书笔记(三)--RTTI No1: 类的克隆 public class MyObject implements Cloneable { int i; public MyObje ...

  2. HDU 6186 CS Course

    保存前缀后缀. 保存一下前缀和后缀,去掉第$i$个位置,就是$L[i-1]$和$R[i+1]$进行运算. #include<bits/stdc++.h> using namespace s ...

  3. Android签名打包详解

    一.      Android签名有什么作用? 应用程序升级:如果你希望用户无缝升级到新的版本,那么你必须用同一个证书进行签名.这是由于只有以同一个证书签名,系统才会允许安装升级的应用程序.如果你采用 ...

  4. shell kill session

    ps -ef | grep java kill -9 pid

  5. 「BZOJ4763」雪辉

    「BZOJ4763」天野雪辉 题目大意:有一棵 \(n\) 个点的树,树上每一个点有权值 \(a_i \leq 30000\) ,每次询问给出若干路径,求出这些路径的并上面的不同颜色数与 \(mex\ ...

  6. 2018BNU校赛总决赛

    题解是qls的题解我就懒得写了23333 A塞特斯玛斯塔 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld ...

  7. bzoj 4097: [Usaco2013 dec]Vacation Planning

    4097: [Usaco2013 dec]Vacation Planning Description Air Bovinia is planning to connect the N farms (1 ...

  8. Python模块之: configobj(转)

    原来也有写过一篇文章Python模块之: ConfigParser 用来解析INI文件,但是在使用过程中存在一些问题.比如:1,不能区分大小写.2,重新写入的ini文件不能保留原有INI文件的注释.3 ...

  9. 【转】为 OSCHINA 聚会搞的一个小抽奖程序

    http://www.oschina.net/code/snippet_12_7605 在线演示: http://www.oschina.net/r.html

  10. 【cocos2d-x制作别踩白块儿】第九期:游戏计时功能(附源代码)

    游戏没有计时,不是坑爹吗? 这一期,我们将来加入游戏计时功能. 1. 定义变量和函数 我们先在HelloWorldScene.h中定义几个变量和函数 long startTime; bool time ...