Description

有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为

能同时整除 i 和 j 的所有自然数之和。给定 a , 计算数表中不大于 a 的数之和。

Input

输入包含多组数据。

输入的第一行一个整数Q表示测试点内的数据组数

接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148


题解%%%%贝神的blog,我就不赘述了


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
int prime[N], mu[N], tot = 0;
bool vis[N];
int sum[N], pre[N], ans[N];
struct Ques {
int n, m, id, a;
} Q[N];
bool operator < (const Ques a, const Ques b) {
return a.a < b.a;
}
struct Node {
int id, vl;
} P[N];
bool operator < (const Node a, const Node b) {
return a.vl < b.vl;
}
void init() {
mu[1] = sum[1] = pre[1] = 1;
P[1] = (Node){1, 1};
fu(i, 2, N - 1) {
if (!vis[i]) {
prime[++tot] = i;
mu[i] = -1;
sum[i] = pre[i] = i + 1;
}
fu(j, 1, tot) {
int nxt = i * prime[j];
if (nxt >= N) break;
vis[nxt] = 1;
if (i % prime[j]) {
pre[nxt] = prime[j] + 1;
sum[nxt] = sum[i] * sum[prime[j]];
mu[nxt] = -mu[i];
} else {
pre[nxt] = pre[i] * prime[j] + 1;
sum[nxt] = sum[i] / pre[i] * pre[nxt];
mu[nxt] = 0;
break;
}
}
P[i] = (Node){i, sum[i]};
}
}
int bit[N];
void add(int x, int vl) {
for (; x < N; x += x & (-x)) bit[x] += vl;
}
int query(int x) {
int res = 0;
for (; x; x -= x & (-x)) res += bit[x];
return res;
}
int main() {
init();
int T; Read(T);
fu(i, 1, T) {
Read(Q[i].n), Read(Q[i].m), Read(Q[i].a);
Q[i].id = i;
}
sort(Q + 1, Q + T + 1);
sort(P + 1, P + N);
int now = 1;
fu(i, 1, T) {
while (now < N && P[now].vl <= Q[i].a) {
fu(j, 1, (N - 1) / P[now].id) {
add(j * P[now].id, mu[j] * P[now].vl);
}
++now;
}
int limit = min(Q[i].n, Q[i].m), k = 0;
for (int j = 1; j <= limit; j = k + 1) {
k = min(Q[i].n / (Q[i].n / j), Q[i].m / (Q[i].m / j));
ans[Q[i].id] += (Q[i].n / j) * (Q[i].m / j) * (query(k) - query(j - 1));
}
}
fu(i, 1, T) {
Write(ans[i] & 2147483647);
putchar('\n');
}
return 0;
}

BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】的更多相关文章

  1. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  2. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  10. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

随机推荐

  1. UVa 11549 计算器谜题(Floyd判圈算法)

    https://vjudge.net/problem/UVA-11549 题意: 有一个老式计算器,只能显示n位数字,输入一个整数k,然后反复平方,如果溢出的话,计算器会显示结果的最高n位.如果一直这 ...

  2. PMP第一章:引论

    项目是为创造独特的产品,服务或成果而进行的临时性的工作. 项目的临时性是指项目有明确的起点和终点. 项目旨在推动组织从一个状态(当前状态)转到另一个状态(将来状态),从而达成特定目标. 项目管理就是将 ...

  3. 使用httpclient提交表单数据加号(+)会被自动替换成空格的坑

    坑的场景: 今天使用httpclient-4.5.3版本,发送如下报文: { "idNo": "7+6+0+2ce722a546b39463bd62817fe57f8&q ...

  4. wamp升级php7

    原文:http://blog.csdn.net/cheng6251/article/details/50730441 1.下载php7   http://windows.PHP.net/downloa ...

  5. Class 的继承

    简介 Class 可以通过extends关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多. class Point { } class ColorPoint extends P ...

  6. 缓存技术内部交流_02_Ehcache3 XML 配置

    参考资料: http://www.ehcache.org/documentation/3.2/getting-started.html#configuring-with-xml http://www. ...

  7. Sql Server中的DBCC命令详细介绍

    一:DBCC 1:什么是DBCC 我不是教学老师,我也说不到没有任何无懈可击的定义,全名:Database Console Commands.顾名思义“数据库控制台命令”,说到“控制台“,我第一反应就 ...

  8. 算法总结1:K-邻近算法

    1. 算法原理: K-邻近算法的原理很简单,就是用你的“邻居”来推断出你的类别.用于离散型数据分析处理. 例子1:如下图有ABCD四个用于参考的样本点,都已知晓自己的坐标位置,这时E来了,不清楚自己的 ...

  9. django自强学堂地址

    https://code.ziqiangxuetang.com/django/django-install.html

  10. 使用Python自带的库和正则表达式爬取熊猫直播主播观看人气

    主要是体现代码的规范性 from urllib import request import re class Spider(): url = 'https://www.panda.tv/cate/lo ...