在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数。UOJ AC,bzoj OLE。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
#define MAXV 4951
vector<int>v;
typedef unsigned int ull;
const ull prime[]={4931,4933,4937,4943,4951};
int n;
ull m,a[101][5],F[MAXV+1][5];
char s[10002];
ull f(const ull &x,const int &wh)
{
if(x>=prime[wh]) return f(x%prime[wh],wh);
if(F[x][wh]<MAXV) return F[x][wh];
ull res=0;
for(int i=n;i>=0;--i)
res=(res*x%prime[wh]+a[i][wh])%prime[wh];
return F[x][wh]=res;
}
int main()
{
scanf("%d",&n); cin>>m;
memset(F,0x7f,sizeof(F));
for(int i=0;i<=n;++i)
{
scanf("%s",s);
int len=strlen(s);
for(int k=(s[0]=='-'?1:0);k<len;++k)
for(int j=0;j<5;++j)
a[i][j]=((a[i][j]*10)%prime[j]+(s[k]-'0'))%prime[j];
if(s[0]=='-')
for(int j=0;j<5;++j)
a[i][j]=prime[j]-a[i][j];
}
for(ull i=1;i<=m;++i)
{
for(int j=0;j<5;++j)
if(f(i,j))
goto OUT;
v.push_back((int)i);
OUT:;
}
printf("%d\n",v.size());
for(int i=0;i<v.size();++i) printf("%d\n",v[i]);
return 0;
}

【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程的更多相关文章

  1. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  2. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  3. BZOJ3751 NOIP2014 解方程(Hash)

    题目链接  BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...

  4. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  5. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  6. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  7. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  8. bzoj3751 / P2312 解方程

    P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...

  9. NOIP2014解方程

    题目:求一个n次整系数方程在1-m内的整数解  n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...

随机推荐

  1. centos安装net-speeder

    以前介绍过VPS上安装锐速对VPS的加速效果,但是这货对 Linux 内核有要求,一般就只能在XEN或者KVM的机子上安装.不过还好锐速有一个免费的代替品:net-speeder,所以这里介绍一下 D ...

  2. scrapy 为每个pipeline配置spider

    在settings.py里面配置pipeline,这里的配置的pipeline会作用于所有的spider,我们可以为每一个spider配置不同的pipeline, 设置 Spider 的 custom ...

  3. css sprite应用

    (一)实现简单的淘宝带图标侧边栏效果 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  4. HDU 2105 The Center of Gravity (数学)

    题目链接 Problem Description Everyone know the story that how Newton discovered the Universal Gravitatio ...

  5. python3 匿名函数,map/reduce/filter等函数结合应用

    匿名函数就是不需要显式的指定函数 # 平方函数 def func1(x): return x**2 print(func1) # 平方函数匿名函数写法 func2=lambda x:x**2 prin ...

  6. Linux终端彩色打印+终端进度条【转】

    转自:https://my.oschina.net/jcseg/blog/178047 开发的一个应用程序选择了终端界面, 为了使软件稍微好看些, 研究下Linux终端的彩色打印, 并且基于这个彩色打 ...

  7. pandas求五日线并画图

    import pandas as pd import numpy as np import matplotlib.pyplot as plt stock_data = pd.read_csv('000 ...

  8. tcpdump 学习(3):MySQL Query

    在MySQL线上环境我们一般只打开了binary log,slow log,有时我们需要查看general log呢?因为该log记录所有的请求,打开该日志肯定给磁盘造成很大压力,IO能力有所下降,所 ...

  9. Django基础之模板

    Django模板系统 官方文档 常用语法 只需要记两种特殊符号: {{  }} 和 {% %} 变量相关的用{{ }},逻辑相关的用{% %}. 变量 {{ 变量名 }} 变量名由字母数字和下划线组成 ...

  10. 自动监控tomcat脚本并且执行重启操作

    #!/bin/sh # func:自动监控tomcat脚本并且执行重启操作 # author:reed # date:// # 定义环境变量 MYPATH=/usr/local/jdk/bin exp ...