我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\)。为什么减1呢,观察题目,发现\(j=i+1\),所以自己与自己的数对是不算的。

\(f(k)\)怎么求?

若\(a,b\)互质,则\(gcd(ak,bk)=k\)。

我们枚举\(a,b\)中较大的那个,记作\(i\),那么另一个数就有\(φ(i)\)种可能,显然,\(1≤i≤n/k\),所以\(f(k)=\sum_{i=1}^{n/k}φ(i)\),用前缀和就行了。

时间复杂度\(O(n)\)

#include <cstdio>
const int MAXN = 100010;
long long phi[MAXN], v[MAXN], prime[MAXN], cnt;
int n;
long long ans;
int main(){
phi[1] = 1;
for(int i = 2; i <= 502; ++i){
if(!v[i]){
v[i] = i;
phi[i] = i - 1;
prime[++cnt] = i;
}
for(int j = 1; j <= cnt; ++j){
if(prime[j] > v[i] || prime[j] * i > 502) break;
v[i * prime[j]] = prime[j];
phi[i * prime[j]] = phi[i] * ((i % prime[j]) ? prime[j] - 1 : prime[j]);
}
}
for(int i = 2; i <= 502; ++i) phi[i] += phi[i - 1];
while(233){
scanf("%d", &n);
if(!n) return 0;
ans = 0;
for(int i = 1; i <= n; ++i) ans += (phi[n / i] - 1) * i;
printf("%lld\n", ans);
}
return 0;
}

【洛谷 UVA11417】 GCD(欧拉函数)的更多相关文章

  1. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  2. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  3. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  8. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  9. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  10. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

随机推荐

  1. 在Linux中安装和配置OpenVPN Server的最简便方法!

    本文介绍了如何在基于RPM和DEB的系统中安装和配置OpenVPN服务器.我们在本文中将使用一个名为openvpn-install的脚本,它使整个OpenVPN服务器的安装和配置过程实现了自动化.该脚 ...

  2. 【好帖】 Mark

    1. 管理篇 2. 程序员选择公司的8个标准 3. 实用工具 4. 离职跳槽 5. DBA 6. 做一个网站多少钱? 7. 十大算法 8. 寻求用户评价App的正确方法 9. 工程师忽略的隐形成本 1 ...

  3. 不用找了,比较全的signalR例子已经为你准备好了(2)---JqGrid 服务端刷新方式-注释详细-DEMO源码下载

    上次用客户端进行数据刷新的方式,和官方的Demo实现存在差异性,今天花了一点时间好好研究了一下后台时时刷新的方式.将写的代码重新update了一次,在这之前找过好多的资料,发现都没有找到好的例子,自己 ...

  4. 虚拟现实-VR-UE4-编译源代码后,无法运行

    情况是这个样,在一开始我编译后,是可以运行,但是当我重新做系统后,再次运行时,每次都是到加载的18%的时候提示了如下错误 具体解决方法还没有找到,正在努力找中.........,会后续更新 同时希望有 ...

  5. zabbix 2.2 调小监控值

    zabbix_agent默认disk下小于0%告警 调小到5% 组态 > 模板 选择需要的模板的触发器 例如 Template OS Windows 选择触发器 - 探索规则 - 触发器类型  ...

  6. you need to resolve your current index first 已解决

    从一个分支A切换到另一个分支B后,对切换后的B分支进行pull操作,因为pull操作实际上包含了fetch+merge操作,在执行 merge操作时,由于很长时间没有对B分支执行过pull/merge ...

  7. 《python机器学习—预测分析核心算法》:构建预测模型的一般流程

    参见原书1.5节 构建预测模型的一般流程 问题的日常语言表述->问题的数学语言重述重述问题.提取特征.训练算法.评估算法 熟悉不同算法的输入数据结构:1.提取或组合预测所需的特征2.设定训练目标 ...

  8. Spring实战第五章学习笔记————构建Spring Web应用程序

    Spring实战第五章学习笔记----构建Spring Web应用程序 Spring MVC基于模型-视图-控制器(Model-View-Controller)模式实现,它能够构建像Spring框架那 ...

  9. XmlAutoGo

    一个基于 Selenium 3.14.0的脚本执行工具,支持自动化解决方案.Github https://github.com/freeol/XmlAutoGo Document https://xm ...

  10. HDU 4744 Starloop System(最小费用最大流)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Description At the end of the 200013 th year of the Galaxy era, the war between Carbon-based lives a ...