【洛谷 UVA11417】 GCD(欧拉函数)
我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\)。为什么减1呢,观察题目,发现\(j=i+1\),所以自己与自己的数对是不算的。
\(f(k)\)怎么求?
若\(a,b\)互质,则\(gcd(ak,bk)=k\)。
我们枚举\(a,b\)中较大的那个,记作\(i\),那么另一个数就有\(φ(i)\)种可能,显然,\(1≤i≤n/k\),所以\(f(k)=\sum_{i=1}^{n/k}φ(i)\),用前缀和就行了。
时间复杂度\(O(n)\)
#include <cstdio>
const int MAXN = 100010;
long long phi[MAXN], v[MAXN], prime[MAXN], cnt;
int n;
long long ans;
int main(){
phi[1] = 1;
for(int i = 2; i <= 502; ++i){
if(!v[i]){
v[i] = i;
phi[i] = i - 1;
prime[++cnt] = i;
}
for(int j = 1; j <= cnt; ++j){
if(prime[j] > v[i] || prime[j] * i > 502) break;
v[i * prime[j]] = prime[j];
phi[i * prime[j]] = phi[i] * ((i % prime[j]) ? prime[j] - 1 : prime[j]);
}
}
for(int i = 2; i <= 502; ++i) phi[i] += phi[i - 1];
while(233){
scanf("%d", &n);
if(!n) return 0;
ans = 0;
for(int i = 1; i <= n; ++i) ans += (phi[n / i] - 1) * i;
printf("%lld\n", ans);
}
return 0;
}
【洛谷 UVA11417】 GCD(欧拉函数)的更多相关文章
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...
- 洛谷 - P2158 - 仪仗队 - 欧拉函数
https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
随机推荐
- 前端技术Jquery与Ajax使用总结
前端技术Jquery与Ajax使用总结 虽然主要是做的后端,但是由于有些时候也要写写前台的界面,因此也就学习了下Jquery和Ajax的一些知识,虽说此次写的这些对于前端大神来说有些班门弄斧的感觉,但 ...
- 今日头条 2018 AI Camp 视频面试
1. 本次面试是在牛客网平台进行的,没有涉及到技术细节,面试官也说仅仅是聊天.但是,不知道是网络卡顿还是平台缘故,连接非常不稳定,经常听不到声音,对方那边噪音也特别大,面试体验不是很好. 2. 面试时 ...
- c# dll使用注意
1.dll路径最好不要用到中文,会报:尝试读取或写入受保护的内存.这通常指示其他内存已损坏.
- bootsrap 上传插件fileinput 简单使用
1.安装 下载fileinput文件,载入对应的css+js文件,如下: <link href="css/bootstrap.min.css" rel="style ...
- [C/C++] C++中new的语法规则
int *x = new int; //开辟一个存放整数的存储空间,返回一个指向该存储空间的地址(即指针) ); //开辟一个存放整数的空间,并指定该整数的初值为100,返回一个指向该存储空间的地址 ...
- JSP语法,运行机理等
JSP是几年前就接触了,但是用归用,很多实际的意义含义等还是不太明白,借此机会,梳理一下. 1.JSP运行原理:当浏览器web应用服务器请求一个JSP页面时,Web应用服务器将其转换成一个Servle ...
- AGC017D Game on Tree(树型博弈)
题目大意: 给出一棵n个结点的树,以1为根,每次可以切掉除1外的任意一棵子树,最后不能切的话就为负,问是先手必胜还是后手必胜. 题解: 首先我们考虑利用SG函数解决这个问题 如果1结点有多个子节点,那 ...
- BZOJ day2_plus
大半夜的刷b站,好爽啊... 突破十九题 1008105110591088117911911192143218761951196821402242243824562463276128184720
- Angular Cookie 读写
var app = angular.module('Mywind',['ui.router']) app.controller('Myautumn',function($scope,$http,$fi ...
- 原生ajax方法封装
/** * @function ajax request * @fields ajaxName:请求名称,method:请求方法,headers:setRequestHeader自定义部分,url:接 ...