我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\)。为什么减1呢,观察题目,发现\(j=i+1\),所以自己与自己的数对是不算的。

\(f(k)\)怎么求?

若\(a,b\)互质,则\(gcd(ak,bk)=k\)。

我们枚举\(a,b\)中较大的那个,记作\(i\),那么另一个数就有\(φ(i)\)种可能,显然,\(1≤i≤n/k\),所以\(f(k)=\sum_{i=1}^{n/k}φ(i)\),用前缀和就行了。

时间复杂度\(O(n)\)

#include <cstdio>
const int MAXN = 100010;
long long phi[MAXN], v[MAXN], prime[MAXN], cnt;
int n;
long long ans;
int main(){
phi[1] = 1;
for(int i = 2; i <= 502; ++i){
if(!v[i]){
v[i] = i;
phi[i] = i - 1;
prime[++cnt] = i;
}
for(int j = 1; j <= cnt; ++j){
if(prime[j] > v[i] || prime[j] * i > 502) break;
v[i * prime[j]] = prime[j];
phi[i * prime[j]] = phi[i] * ((i % prime[j]) ? prime[j] - 1 : prime[j]);
}
}
for(int i = 2; i <= 502; ++i) phi[i] += phi[i - 1];
while(233){
scanf("%d", &n);
if(!n) return 0;
ans = 0;
for(int i = 1; i <= n; ++i) ans += (phi[n / i] - 1) * i;
printf("%lld\n", ans);
}
return 0;
}

【洛谷 UVA11417】 GCD(欧拉函数)的更多相关文章

  1. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  2. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  3. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  8. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  9. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  10. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

随机推荐

  1. hadoop中的方法的作用

    /*  * InputFormat类:  *   * 作用:  * 1.设置输入的形式;  * 2.将输入的数据按照相应的形式分割成一个个spilts后再进一步拆分成<key,value> ...

  2. Java 图像处理框架-Marvin

    网上看到,摘录过来的,暂时还没涉足这方面的东西 Marvin 1.4.5 的插件接口支持处理多个图像作为输入,新的插件可通过多个图片来确认背景,新的插件可使用多个图片来合并相同场景. Marvin 是 ...

  3. jdk带的一些工具,强悍

    这些工具有的已经接触到了,功能很强悍,但是使用也有点复杂(参数) 在代码中使用System.setProperty()或者在启动程序时使用-D选项设置代理服务器地址和端口 看看别人的研究: JDK自带 ...

  4. Android adb shell启动应用程序的方法

    在Android中,除了从界面上启动程序之外,还可以从命令行启动程序,使用的是命令行工具am. usage: am [subcommand] [options] start an Activity: ...

  5. jdk8 新特性stream().map()

    1.大写字符串列表 1.1 简单的Java示例将Strings列表转换为大写 TestJava8.java package com.mkyong.java8; import java.util.Arr ...

  6. Qt 实现在隐藏标题栏情况下,窗口的缩放(未成功)

    呃,这是一个悲剧的版本,在这版本中,我按照网上大神的说法,试了一下,但是没有效果,不知道出错在了那里,和昨天一样,也是,没有理想的效果,这里贴上代码,记录一下 资料连接:放评论 需要包含头文件 #in ...

  7. 从源码安装opencv

    操作系统为Debian9,由于使用apt-get安装在/usr/lib目录下的opencv可能会造成一些项目上的头文件错误问题,所以选择了从源码安装. 选择opencv3.4.1, 进入https:/ ...

  8. mongodb数据库高级操作

    1.创建索引 2.索引名称 3.其他索引 4.explain 5.操作索引 6.高级特性 7.固定集合 8.导入导出 9.上锁 10.添加用户 11.主从复制

  9. C++STL——vector

    一.相关定义 vector 数组 随机访问迭代器 快速随机访问元素 尾部进行快速随机地插入和删除操作 特征: 能够存放任意类型: 访问vector中的任意元素或从末尾添加元素都可以在常量级时间复杂度内 ...

  10. Mac下使用Charles抓包Android

    原文地址:http://fanjiajia.cn/2018/11/21/Mac%E4%B8%8B%E4%BD%BF%E7%94%A8Charles%E6%8A%93%E5%8C%85Android/ ...