快三个月没做反演题了吧……

感觉高一上学期学的全忘了……

所以还得从零开始学推式子。

# bzoj1011

标签(空格分隔): 未分类

---

原题意思是求以下式子:
$Ans=\sum\limits_{i=1}^{a}\sum\limits_{i=1}^{b}[gcd(i,j)==k]$
首先把k拿下来,得到
$Ans=\sum\limits_{i=1}^{a/k}\sum\limits_{i=1}^{b/k}[gcd(i,j)==1]$
然后考虑mobius函数的性质:
$\sum\limits_{d|n}\mu(d)=1(n==1),0(n>1)$
所以可以把那个gcd的式子替换下,得到:
$Ans=\sum\limits_{i=1}^{a/k}\sum\limits_{i=1}^{b/k}\sum\limits_{d|gcd(i,j)}\mu(d)$
我们稍微改写一下这个式子:
$Ans=\sum\limits_{i=1}^{a/k}\sum\limits_{i=1}^{b/k}\sum\limits_{d|i,d|j}\mu(d)$
这个时候我们把$\mu(i)$提前(也就是交换枚举顺序)得到下面的式子:
$Ans=\sum\limits_{d=1}^{min(a/k,b/k)}\mu(d)\sum\limits_{i=1,d|i}^{a/k}\sum\limits_{j=1,d|j}^{b/k}1$
这个式子比较蠢,我们能看出来这个式子的意思就是:
$Ans=\sum\limits_{d=1}^{min(a/k,b/k)}\mu(d)\frac{a/k}{d}\frac{b/k}{d}$
考虑到后者只有$\sqrt{\frac{a}{k}}$种取值
所以下底函数分块,前缀和优化下就能过了。

#include<bits/stdc++.h>
#define N 100005
using namespace std;
typedef long long ll;
int prime[N],mu[N],s[N],vis[N],cnt=;
void calcmu(){
cnt=;mu[]=;memset(vis,,sizeof(vis));
for(int i=;i<N;i++){
if(vis[i])prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt;j++){
int t=prime[j]*i;if(t>N)break;
vis[t]=;
if(i%prime[j]==){mu[t]=;break;}
mu[t]=-mu[i];
}
}
s[]=;
for(int i=;i<=N;i++)s[i]=s[i-]+mu[i];
}
ll calc(int n,int m,int k){
n/=k;m/=k;ll ans=;int j=;
if(n>m)swap(n,m);
for(int i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=1LL*(s[j]-s[i-])*(n/i)*(m/i);
}
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
int T=read();calcmu();
while(T--){
int n=read(),m=read(),k=read();
printf("%lld\n",calc(n,m,k));
}
return ;
}

【反演复习计划】【bzoj1011】zap-queries的更多相关文章

  1. 【反演复习计划】【51nod1594】Gcd and Phi

    现在感觉反演好多都是套路QAQ…… #include<bits/stdc++.h> using namespace std; ; typedef long long ll; int n,c ...

  2. 【反演复习计划】【COGS2432】爱蜜莉雅的施法

    也是一个反演. 第一次手动推出一个简单的式子,激动.jpg 原题意思是求:$Ans=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\phi(gcd(i,j))$随 ...

  3. 【反演复习计划】【bzoj4407】于神之怒加强版

    #include<bits/stdc++.h> #define N 5000010 #define yql 1000000007 using namespace std; typedef ...

  4. 【反演复习计划】【COGS2433】&&【bzoj3930,CQOI2015选数】爱蜜莉雅的冰魔法

    同bzoj3930. (日常盗题图) #include<bits/stdc++.h> #define N 1000010 #define yql 1000000007 #define ll ...

  5. 【反演复习计划】【COGS2431】爱蜜莉雅的求助

    出题人怎么这么不认真啊==明明官方译名是爱蜜莉雅…… 而且我们爱蜜莉雅碳是有英文名哒!是Emilia.你那个aimiliya我实在是无力吐槽…… 不过抱图跑23333首先这很像约数个数和函数诶!但是唯 ...

  6. 【反演复习计划】【bzoj2154】Crash的数字表格

    膜拜cdc……他的推导详细到我这种蒟蒻都能看得懂! 膜拜的传送门 所以我附一下代码就好了. #include<bits/stdc++.h> #define N 10000005 #defi ...

  7. 【反演复习计划】【bzoj3529】数表

    Orz PoPoQQQ大爷 按照他ppt的解法,这题可以划归到之前的题了OrzOrz 跪wy写的题解(Stealth Assassin)https://www.luogu.org/wiki/show? ...

  8. 【反演复习计划】【bzoj3994】DZY loves maths

    这题大概就是提取一下d,然后就跟前面的题目差不多了. #include<bits/stdc++.h> #define N 10000005 using namespace std; typ ...

  9. 【反演复习计划】【bzoj3994】约数个数和

    首先要用数学归纳证明一个结论,不过因为我实在是懒得打公式了... 先发代码吧. #include<bits/stdc++.h> #define N 50005 using namespac ...

随机推荐

  1. Drools 7.4.1.Final参考手册(六) 用户手册

    用户手册 基础 无状态的知识Session Drools规则引擎拥有大量的用例和功能,我们要如何开始?你无须担心,这些复杂性是分层的,你可以用简单的用例来逐步入门. 无状态Session,无须使用推理 ...

  2. MySQL 5.6查看数据库的大小

    1. use information_schema; 2. select concat(round(sum(data_length/1024/1024),2),'MB') as data from t ...

  3. 最短路径——Bellman-Ford算法以及SPFA算法

    说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...

  4. Sql Server性能优化辅助指标SET STATISTICS TIME ON和SET STATISTICS IO ON

    1.前言 对于优化SQL语句或存储过程,以前主要是用如下语句来判断具体执行时间,但是SQL环境是复杂多变的,下面语句并不能精准判断性能是否提高:如果需要精确知道CPU.IO等信息,就无能为力了. ), ...

  5. spring中context:property-placeholder

    发现网上对于这个标签的解释过于复杂,这里从实用性角度简短的进行说明. 首先,它是spring3中提供的标签. 只需要在spring的配置文件里添加一句: <context:property-pl ...

  6. 使用XML传递数据

    HTML <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF- ...

  7. kibana和ElasticSearch的信息查询检索

    使用kibana来进行ElasticSearch的信息查询检索 大家经常会听到使用ELK搭建日志管理平台.完成日志聚合检索的功能,那么这个平台到底是个什么概念,怎么搭建,怎么使用呢? ELK包括Ela ...

  8. WebSocket简单介绍(WebSocket JavaScript 接口)(2)

    上一节介绍了 WebSocket 规范,其中主要介绍了 WebSocket 的握手协议.握手协议通常是我们在构建 WebSocket 服务器端的实现和提供浏览器的WebSocket 支持时需要考虑的问 ...

  9. BZOJ4416 SHOI2013阶乘字符串(状压dp)

    当n大到一定程度(>21)时一定无解,并不会证. 如果要取出一个排列,显然应该让每一位在序列中的位置尽量靠前.于是设f[S]表示存在S子集中这些字母所组成的所有排列的最短前缀的长度,枚举当前排列 ...

  10. [IOI2007 D1T1]Miners 矿工配餐

    题目大意:有$2$个煤矿,$n$天.每天给一个煤矿送餐(共有有$3$种餐),价值为它与前面两次送餐(如果有的话)不同的种类数.最大化价值. 题解:看到只有三种餐,考虑状压$DP$.$f_{i,j,k, ...