Spark的job调优(1)
本文翻译之cloudera的博客,本系列有两篇,第二篇看心情了
概论
Spark如何执行应用

sc.textFile("someFile.txt").map(mapFunc).flatMap(flatMapFunc).filter(filterFunc).count()
val tokenized = sc.textFile(args(0)).flatMap(_.split(' '))val wordCounts = tokenized.map((_,1)).reduceByKey(_ + _)val filtered = wordCounts.filter(_._2 >=1000)val charCounts = filtered.flatMap(_._1.toCharArray).map((_,1)).reduceByKey(_ + _)charCounts.collect()


选择正确的操作
- 当执行一个associative reductive 操作时不要使用groupbykey,例如。 rdd.groupbykey().mapValues(_.sum)和rdd.reduceBykey(_+_)的结果一样,但是前面的操作会导致所有的数据进行网络传输,后者只会先在本地计算每个patition相同key的和,然后通过shuffler合并所有本地计算的和(都会有shuffle,但是传输的数据减少了很多)
- 当输入和输出的类型不一样时不要使用reduceByKey,例如
当写一个transformation用来找到每一个key对应唯一的一个字符串是,一种方式如下:rdd.map(kv => (kv._1, new Set[String]() + kv._2)).reduceByKey(_ ++ _),该操作会导致大量的不必要的set对象,每个key都会创建一个,这里最好使用aggregateBykey,它会执行map端的聚集更有效val zero =new collection.mutable.Set[String]()rdd.aggregateByKey(zero)((set, v)=> set += v,(set1, set2)=> set1 ++= set2)
什么时候shuffle不会发生
rdd1 = someRdd.reduceByKey(...)rdd2 = someOtherRdd.reduceByKey(...)rdd3 = rdd1.join(rdd2)


什么时候需要更多的shuffle
二次排序
Spark的job调优(1)的更多相关文章
- Spark:性能调优
来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理 ...
- Spark的性能调优杂谈
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1> 每一台host上面可以并行N个worker,每一个worke ...
- spark submit参数调优
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...
- Spark Streaming性能调优详解
Spark Streaming性能调优详解 Spark 2015-04-28 7:43:05 7896℃ 0评论 分享到微博 下载为PDF 2014 Spark亚太峰会会议资料下载.< ...
- spark 资源参数调优
资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使 ...
- Spark(九)Spark之Shuffle调优
一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark(六)Spark之开发调优以及资源调优
Spark调优主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分.开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主 ...
- Spark的性能调优
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. Data Serialization,默认使用的是Java Serialization,这个程序员 ...
- Spark Streaming性能调优详解(转)
原文链接:Spark Streaming性能调优详解 Spark Streaming提供了高效便捷的流式处理模式,但是在有些场景下,使用默认的配置达不到最优,甚至无法实时处理来自外部的数据,这时候我们 ...
- Spark Streaming性能调优
数据接收并行度调优(一) 通过网络接收数据时(比如Kafka.Flume),会将数据反序列化,并存储在Spark的内存中.如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收.每一个输入DStrea ...
随机推荐
- 前端工程师面试问题归纳(一、问答类html/css/js基础)
一.参考资源 1.前端面试题及答案整理(一) 2.2017年前端面试题整理汇总100题 3.2018最新Web前端经典面试试题及答案 4.[javascript常见面试题]常见前端面试题及答案 5.W ...
- Des加解密(Java端和Js端配套)解析
一.什么是DES加密 des对称加密,对称加密,是一种比较传统的加密方式,其加密运算.解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码( ...
- asp+jquery+ajax,asp后台程序执行不正常
项目中前台页面通过jquery .ajax功能将关键数据传递到后台并写入数据库,调试中发现后台程序一直没有正常执行,后反复排查 发现asp程序中不能包含#include file语句
- dubbox消费者启动成功,却无法连接注册中心
使用dubbox作为服务提供端很好实现,因为git的说明和网上有很多的例子可供参考,但是消费端都一笔带过,简单得很,初学者往往以为只要配置如下3样东西就够了: <?xml version=&qu ...
- 通过html字符串连接组合并调用javascript函数
----通过字符串连接并调用javascript函数-- var t_html = $("#Photo").html(); var n_html = "<a id= ...
- CAN总线扩展数据帧介绍
在扩展CAN 数据帧中,紧随SOF 位的是32 位的仲裁字段.仲裁字段的前11 位为29 位标识符的最高有效位(Most Significant bit,MSb)(基本lD) .紧随这11 位的是替代 ...
- mysql实战优化之七:数据库侧配置优化
对于功能,我们可能知道必须改进什么:但对于性能问题,有时我们可能无从下手.其实,任何计算机应用系统最终队可以归结为: cpu消耗 内存使用 对磁盘,网络或其他I/O设备的输入/输出(I/O)操作. 但 ...
- ansible安装配置zabbix客户端
安装软件 ansible host -m apt -a "name=zabbix-agent state=present" ansible host -m shell -a ...
- 缓存 memcached 与 redis
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
- Node.js的原型继承函数util.inherits
util.inherits(constructor, superConstructor)是一个实现对象间原型继承 的函数.JavaScript 的面向对象特性是基于原型的,与常见的基于类的不同.Jav ...