若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立:

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\]

特别地,取λi=1/n  (i=1,2,...,n),就有

\[f(\frac{1}{n}\sum ^{n}_{i=1}x_{i})\leq \frac{1}{n}\sum ^{n}_{i=1} \qquad (f(\frac{1}{n}\sum ^{n}_{n=1})\geq \frac{1}{n}\sum ^{n}_{i=1}f(x_{i}))\]

为了方便说明,以下函数均以下凸函数为例

证明:

在i=1,2时 Jensen不等式 显然成立:

\[f(\lambda _{1}x_{1}+\lambda _{2}x_{2})\leq \lambda _{1}f(x_{1})+\lambda _{2}f(x_{2})\]

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]

利用数学归纳法证明 i≥3 的情况

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f(\lambda _{n+1}x_{n+1}+\sum ^{n}_{i=1}\lambda _{i}x_{i})\]

由题意\[\sum ^{n+1}_{i=1}\lambda _{i}=1\],

设\[\eta _{i}=\frac{\lambda {i}}{1-\lambda _{n+1}}\]

得:

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f[\lambda _{n+1}x_{n+1}+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}x_{i}]\]

由i=2时 Jensen不等式 成立,可得

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})f(\sum ^{n}_{i=1}\eta _{i}x_{i})\]

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}f(x_{i})=\sum ^{n+1}_{i=1}\lambda _{i}f(x_{i})\]

于是证得Jensen不等式在i≥3时也成立

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]

Jensen 不等式的更多相关文章

  1. 机器学习数学|微积分梯度jensen不等式

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...

  2. 数学分析中jensen不等式由浅入深进行教学(转)

    中国知网:数学分析中Jensen不等式由浅入深进行教学

  3. 归并排序、jensen不等式、非线性、深度学习

    前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...

  4. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

  5. 从Jensen不等式到Minkowski不等式

    整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...

  6. 凸函数与Jensen不等式

    这个是在凸优化里面看的,在EM算法中看有用到,所以用latex写了篇回忆用的小短文,现在不会把latex产生的pdf怎么转变成放到这里的内容. 所以我选择直接贴图. 这个pdf可以在我的资源里找到.  ...

  7. Jensen不等式

  8. MM bound 与 Jensen's inequality

    MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...

  9. Machine Learning Algorithms Study Notes(6)—遗忘的数学知识

    机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...

随机推荐

  1. 选择排序——Java实现

    一.排序思想 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是: 从待排序列中选出最小(或最大)的一个元素,记录其下标(数组)的位置: 将记录的下标值与待排序列的第一个 ...

  2. Backbone事件机制核心源码(仅包含Events、Model模块)

    一.应用场景 为了改善酷版139邮箱的代码结构,引入backbone的事件机制,按照MVC的分层思想搭建酷版云邮局的代码框架.力求在保持酷版轻量级的基础上提高代码的可维护性.   二.遗留问题 1.b ...

  3. webpack、babel模块、模块化

    一.webpack介绍 webpack这个工具非常强大,解决了前端很繁琐的一些工具流程繁琐的事情.中文官网链接地址:https://www.webpackjs.com/ 1.为什么要使用webpack ...

  4. 51nod 1597 有限背包计数问题 (背包 分块)

    题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...

  5. sort属性

    学习文章---链接 总结笔记 ①sort是Array.prototype的属性, ②如果不写入参数,则按照转换为的字符串的每个字符的unicode位点进行排序, ③如果传入一个比较函数sort(fun ...

  6. node.js-cancelled because Node.js is unresponsive

    今天初学node.js,但是在使用vs code 进行启动调试的时候出现了一个问题 这个报错,一开始我并不知道是什么意思.(而截至我写这个笔记我也还没了解清楚) 大概翻译出来的意思是说 “node.j ...

  7. 闭包中的this

    var name="pushline";//全局变量 var obj=new Object(); obj.name="jms"; obj.getName=fun ...

  8. Microsoft Fluent Design System

    转载自:http://www.ui.cn/detail/131217.html 就在刚刚举办的 Microsoft Build 2017 中,微软对外公布了它们最新的设计语言--"Fluen ...

  9. 【Spring实战】—— 14 传统的JDBC实现的DAO插入和读取

    从这篇开始学习Spring的JDBC,为了了解Spring对于JDBC的作用,先通过JDBC传统的流程,实现一个数据库的插入和读取. 从这篇你可以了解到: 1 传统的JDBC插入和读取的过程. 2 如 ...

  10. 团队合作之Scrum

    CCSU小助手 一:开发团队简介 队名:瓜队 组员:钟文兴.周畅.吉刘磊.唐仲勋 宣言:We are a team at any time! 团队项目描述: 内容:“生活在长大”: 目标:为了方便对学 ...