牛客挑战赛30-T3 小G砍树
题目大意:
n个节点的带标号无根树。每次选择一个度数为1的节点并将它从树上移除。问总共有多少种不同的方式能将这棵树删到只剩 1 个点。两种方式不同当且仅当至少有一步被删除的节点不同。
题解:
先考虑1号店最后移除时候的贡献,我们可以钦定1号点为根,并钦定他最后移除
然后就是一个树形dp
设\(f_i\)表示i号点子树移除方案数量,\(size_i\)表示1为根时子树大小
显然有dp式子\(f_x=\frac{(size_x-1)!}{\prod (size_i)!}\prod f_i\) (满足1为根时x是i的爹)
然后最后移除点1的情况的贡献就算出来了
我们考虑换根
先考虑x的转移少了j这个子树节点会咋样
那么\(f'_x=f_x/f_j/(size_x-1)!*(size_x-1-size_j)!*(size_j)!\)
注意这里的\(size_x\)是n,我们已经假设x是树的根了
然后我们再把\(f'_x\)转移到j上去,则新的j有
\(f'_j=f_j*f'_x/(size_j-1)!*(n-1)!/(n-size_i)!\)
由于涉及到求逆元,时间复杂度为\(O(n\log n)\)
#include <cstdio>
#include <vector>
using namespace std;
const int xkj = 998244353;
int n;
vector<int> out[100010];
int sz[100010], fa[100010], f[100010];
int fac[100010], inv[100010], ans;
int qpow(int x, int y)
{
int res = 1;
for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj)
if (y & 1) res = res * (long long)x % xkj;
return res;
}
void dfs1(int x)
{
sz[x] = 1, f[x] = 1;
for (int i : out[x]) if (fa[x] != i)
{
fa[i] = x, dfs1(i), sz[x] += sz[i];
f[x] = f[x] * (long long)f[i] % xkj;
f[x] = f[x] * (long long)inv[sz[i]] % xkj;
}
f[x] = f[x] * (long long)fac[sz[x] - 1] % xkj;
}
void dfs2(int x)
{
ans = (ans + f[x]) % xkj;
for (int i : out[x]) if (fa[x] != i)
{
int tmp = f[x] * (long long)qpow(f[i], xkj - 2) % xkj * fac[sz[i]] % xkj * inv[n - 1] % xkj * fac[n - 1 - sz[i]] % xkj;
int sb = f[i] * (long long)tmp % xkj * inv[sz[i] - 1] % xkj * fac[n - 1] % xkj * inv[n - sz[i]] % xkj; f[i] = sb;
dfs2(i);
}
}
int main()
{
scanf("%d", &n);
fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * (long long)i % xkj;
inv[n] = qpow(fac[n], xkj - 2);
for (int i = n; i >= 1; i--) inv[i - 1] = inv[i] * (long long)i % xkj;
for (int x, y, i = 1; i < n; i++) scanf("%d%d", &x, &y), out[x].push_back(y), out[y].push_back(x);
dfs1(1), dfs2(1);
printf("%d\n", ans);
return 0;
}
牛客挑战赛30-T3 小G砍树的更多相关文章
- 牛客挑战赛 30 A 小G数数
题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...
- 5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题
LINK:小V和字符串 容易想到只有1个数相同的 才能有贡献. 知道两个01串 那么容易得到最小步数 大体上就是 第一个串的最前的1和第二个串最前的1进行匹配. 容易想到设f[i][j]表示 前i位1 ...
- 5.15 牛客挑战赛40 B 小V的序列 关于随机均摊分析 二进制
LINK:小V的序列 考试的时候 没想到正解 于是自闭. 题意很简单 就是 给出一个序列a 每次询问一个x 问序列中是否存在y 使得x^y的二进制位位1的个数<=3. 容易想到 暴力枚举. 第一 ...
- 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治
LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...
- 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)
点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...
- NowCoder--牛客练习赛30 C_小K的疑惑
题目链接 :牛客练习赛30 C_小K的疑惑 i j k 可以相同 而且 距离%2 只有 0 1两种情况 我们考虑 因为要 d(i j)=d(i k)=d(j k) 所以我们只能找 要么三个点 任意两个 ...
- 牛客小白月赛13-J小A的数学题 (莫比乌斯反演)
链接:https://ac.nowcoder.com/acm/contest/549/J来源:牛客网 题目描述 小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j ...
- 牛客小白月赛13 小A的回文串(Manacher)
链接:https://ac.nowcoder.com/acm/contest/549/B来源:牛客网 题目描述 小A非常喜欢回文串,当然我们都知道回文串这种情况是非常特殊的.所以小A只想知道给定的一个 ...
随机推荐
- IIS监控应用程序池和站点假死,自动重启IIS小工具
文章技术适合初学者.高级的C#开发工程师这些估计都熟悉到烂了,望不要喷. 第一.C#代码要操作IIS 就必须先导入 Microsoft.Web.Administration.dll ,方便控制台程序做 ...
- ffmpeg截取一段视频中一段视频
ffmpeg -i ./plutopr.mp4 -vcodec copy -acodec copy -ss 00:00:10 -to 00:00:15 ./cutout1.mp4 -y -ss ti ...
- HBase 官方文档中文版
地址链接: http://abloz.com/hbase/book.html 里面包含基本的API和使用说明
- [luogu3369]普通平衡树(替罪羊树模板)
解题关键:由于需要根据平衡进行重建,所以不能进行去重,否则无法保证平衡性. #include<cstdio> #include<cstring> #include<alg ...
- AntD02 Table组件的使用
1 前提准备 1.1 创建一个angular项目 1.2 将 Ant Design 整合到 Angular 项目中 1.3 官方文档 点击前往 2 简单使用 <nz-table #rowSele ...
- spring aop自动代理注解配置之一
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- Cannot connect to the Docker datemon at tcp://0.0.0.0:2375 is the docker daemon runing?
一.系统环境: 在Windows 7 64位上,采用Vmware workstation 12安装了CenOS7.5 64位. 二.问题 在CentOS7.5里安装了Docker,启动docker服务 ...
- Linux PulseAudio
一.简介 Linux的声音系统或许是最无序的子系统部分!作为Server来说,声音无足轻重,无人问津,而作为桌面来说太多的实现方案,各有各的长出和不足,ALSA经过多年的发展,基本统一了Linux声卡 ...
- 21. Date 函数
SQL 日期 当我们处理日期时,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配. 只要数据包含的只是日期部分,运行查询就不会出问题.但是,如果涉及时间,情况就有点复杂了. 在讨论 ...
- grid search 超参数寻优
http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和 RandomizedSearchC ...