1.1 方法简介

描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识。
在此所提供之统计量包含:

  • 基本信息:样本数、总和
  • 集中趋势:均值、中位数、众数
  • 离散趋势:方差(标准差)、变异系数、全距(最小值、最大值)、内四分位距(25%分位数、75%分位数)
  • 分布描述:峰度系数、偏度系数

用户可选择多个变量同时进行计算,亦可选择分组变量进行多组别的统计量计算。

1.2 详细介绍

1.2.1 样本数和总和

1. R语言涉及的方法:length(x)

1.2.2 均值(Mean)

1. 公式

2. R语言实现方法:mean(x)

例如:

> mean(Nile)
[1] 919.35

1.2.3 中位数(Median)

1. 定义:

中位数描述数据中心位置的数字特征。大体上比中位数大或小的数据个数为整个数据的一半。对于对称分布的数据,均值与中位数比较接近;对于偏态分布的数据,均值与中位数不同。中位数的又一显著特点是不受异常值得影响,具有稳健性,因此它是数据分析中相当重要的统计量。

2. R语言实现方法:median(x)

例如:

> median(Nile)
[1] 893.5

1.2.4 众数(Mode)

1. 定义

众数(Mode),在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。

2. R语言实现方法:names(which.max(table(x)))

1.2.5 方差(Variance)、标准差(Standard Deviation)

1. 定义

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

2. 公式

3. R语言实现方法:

  • 方差:var(x)
  • 标准差:sd(x)

1.2.6 变异系数(Coefficient of Variation)

1. 定义

在概率论和统计学中,变异系数,又称“离散系数”,是概率分布离散程度的一个归一化量度。

2. 公式


σ:标准差,μ:平均值

3. R语言实现方法:sd(x)/mean(x)

例如:

> sd(Nile)/mean(Nile)
[1] 0.184073

1.2.6 全距(Range)(最小值、最大值)

1. 定义

全距(Range),又称极差,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距;即最大值减最小值后所得之数据。
全距可以用ω(读做omega)来表示。

2. 公式


ω:全距,X_H:最大值,X_L:最小值

3. R语言实现方法:

  • 最大值:max(x)
  • 最小值:min(x)
  • 全距:range(x)

1.2.7 四分位距(Quartile)(25%分位数、75%分位数)

1. 定义

内四分位距(interquartile range, IQR),是描述统计学中的一种方法,以确定第三四分位数和第一四分位数的分别(即Q_1, Q_3的差距)。与方差、标准差一样,表示统计资料中各变量分散情形,但四分差更多为一种稳健统计(robust statistic)。

2. 公式

四分位距:IQR=Q3-Q1
四分位差:QD=(Q3-Q1)/2

3. R语言实现方法:

  • quantile(x)
  • fivenum(x)
  • 四分位距: S<-fivenum(x) S[3]-S[1]

例如

> quantile(Nile)
0% 25% 50% 75% 100%
456.0 798.5 893.5 1032.5 1370.0
> fivenum(Nile)
[1] 456.0 798.0 893.5 1035.0 1370.0

1.2.8 峰度(Kurtosis)

1. 定义

在统计学中,峰度(Kurtosis)又称峰态系数,用来衡量实数随机变量概率分布的峰态。峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的。峰度刻划不同类型的分布的集中和分散程序。设分布函数F(x)有中心矩μ_2, μ_4,则C_k=μ_4/(μ_2^2 )-3为峰度系数。

2. 公式

3. 距

1) 原点距(moment about origin)

对于正整数k,如果E(X^k)存在,称μ^k=E(X^k)为随机变量X的k阶原点矩。X的数学期望(均值)是X的一阶原点矩,即E(X)=μ^1。

2) 中心距(moment about centre)

对于正整数k,如果E(X)存在,且E([X – EX]k)也存在,则称E([X-EX]k)为随机变量X的k阶中心矩。如X的方差是X的二阶中心矩,即D(X)= E([X-EX]2)

4. R语言实现方法:kurtosis(x)

例如:

> library(PerformanceAnalytics)
> kurtosis(Nile)
[1] -0.3049068

1.2.9 偏度(Skewness)

1. 定义

在机率论和统计学中,偏度衡量实数随机变量概率分布的不对称性。偏度的值可以为正,可以为负或者甚至是无法定义。在数量上,偏度为负(负偏态)就意味着在概率密度函数左侧的尾部比右侧的长,绝大多数的值(包括中位数在内)位于平均值的右侧。偏度为正(正偏态)就意味着在概率密度函数右侧的尾部比左侧的长,绝大多数的值(包括中位数在内)位于平均值的左侧。偏度为零就表示数值相对均匀地分布在平均值的两侧,但不一定意味着其为对称分布。

2. 公式


当Cs>0时,概率分布偏向均值右则,Cs<0时,概率分布偏向均值左则。

3. R语言实现方法:skewness(x)

例如:

> library(PerformanceAnalytics)
> skewness(Nile)
[1] 0.3223697

基于R语言的数据分析和挖掘方法总结——描述性统计的更多相关文章

  1. 基于R语言的数据分析和挖掘方法总结——中位数检验

    3.1 单组样本符号秩检验(Wilcoxon signed-rank test) 3.1.1 方法简介 此处使用的统计分析方法为美国统计学家Frank Wilcoxon所提出的非参数方法,称为Wilc ...

  2. 基于R语言的数据分析和挖掘方法总结——均值检验

    2.1 单组样本均值t检验(One-sample t-test) 2.1.1 方法简介 t检验,又称学生t(student t)检验,是由英国统计学家戈斯特(William Sealy Gosset, ...

  3. 基于R语言的时间序列指数模型

    时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Lon ...

  4. 基于R语言的ARIMA模型

    A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...

  5. 概率图模型 基于R语言 这本书中的第一个R语言程序

    概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = ...

  6. Twitter基于R语言的时序数据突变检测(BreakoutDetection)

    Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并 ...

  7. 对数据集做标准化处理的几种方法——基于R语言

    数据集——iris(R语言自带鸢尾花包) 一.scale函数 scale函数默认的是对制定数据做均值为0,标准差为1的标准化.它的两个参数center和scale: 1)center和scale默认为 ...

  8. 基于R语言的航空公司客户价值分析

    分析航空公司现状 1.行业内竞争 民航的竞争除了三大航空公司之间的竞争之外,还将加入新崛起的各类小型航空公司.民营航空公司,甚至国外航空巨头.航空产品生产过剩,产品同质化特征愈加明显,于是航空公司从价 ...

  9. R语言基因组数据分析可能会用到的data.table函数整理

    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部 ...

随机推荐

  1. sqrt函数实现(神奇的算法)

    我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢? 虽然 ...

  2. Linux 文件管理(C语言库函数二--程序日志)

    文件删除和改名 int remove(const char *pathname); int rename(const char *oldpath,const char *newpath); remov ...

  3. Ubuntu安装特定版本安装包

    Ubuntu安装特定版本安装包可以用aptitude,aptitude是apt-get的高级版,使用起来更强大. aptitude install package=version 比如我要安装2.6. ...

  4. UICollectionView sectionHeader and sectionFooter悬浮

    UICollectionViewFlowLayout *yLayout = [[UICollectionViewFlowLayout alloc] init]; yLayout.sectionHead ...

  5. POJ1182食物链(并查集经典好题)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=66964#problem/E 题目思路:主要有两种思路:1.带权并查集2.挑战程 ...

  6. H - N皇后问题

    H - N皇后问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descripti ...

  7. 巨蟒django之权限7:动态生成一级&&二级菜单

    内容回顾: . 权限的控制 . 表结构设计 存权限的信息 用户表 - name 用户名 - pwd 密码 - roles 多对多 角色表 - name - permissions 多对多 权限表 - ...

  8. spring多数据源事务配置

    项目中遇到多数据源问题, 对于每个数据源需要单独完成事务控制, 这里记录下具体实现方法 在spring配置文件中 定义两个数据源 <!-- 数据源定义(spring-jndi) -->   ...

  9. js计算两个时间之间的间隔

    计算时间间隔的方法有很多,这里只是一种方式,可以方法里直接传入两个时间,也可以传入两个字符串格式的时间,在方法里解析一下就ok,这个例子里不传入参数,直接在方法里随便写一个时间来演示一下 fun() ...

  10. 一直没有敢发的NOIP2018游记

    一直没有敢发的NOIP2018游记 NOIP2018游记 教练说知足是最好的,尽吾志而也不能及者,可以无悔矣.在这次考试中的表现令我还是十分满意的.(笑) D1 T0 我配置背得感觉很好,我考场上直接 ...