codevs 1078 最小生成树 kruskal
题目描述 Description
农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了使花费最少,他想铺设最短的光纤去连接所有的农场。 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。 每两个农场间的距离不会超过100000
第一行: 农场的个数,N(3<=N<=100)。
第二行..结尾: 接下来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们每行限制在80个字符以内,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为线路从第i个农场到它本身的距离在本题中没有意义。
只有一个输出,是连接到每个农场的光纤的最小长度和。
样例输入 Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
28
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<stack>
using namespace std;
struct node
{
int l;
int r;
int v;
}N[];
int fa[];
int n;
int jishu;
int exm;
bool cmp(struct node aa,struct node bb)
{
if(aa.v<bb.v)//wa 点!!!
return true;
return false;
}
void init()
{
for(int i=;i<n;i++)
fa[i]=i;
}
int find(int root)
{
if(root!=fa[root])
return fa[root]=find(fa[root]);
else
return fa[root];
}
void unio(int a,int b)
{
int aa=find(a);
int bb=find(b);
if(aa!=bb)
fa[aa]=bb;
}
void kruscal()
{
int ans=;
for(int i=;i<jishu;i++)
{
int q=find(N[i].l);
int w=find(N[i].r);
if(q!=w)
{
n--;
unio(q,w);
ans+=N[i].v;
}
if(n==)
break;
}
cout<<ans<<endl;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
jishu=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&exm);
N[jishu].l=i;
N[jishu].r=j;
N[jishu++].v=exm;
}
sort(N,N+jishu,cmp);
kruscal();
}
return ; }
codevs 1078 最小生成树 kruskal的更多相关文章
- wikioi 1078 最小生成树 Kruskal算法
1078 最小生成树 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺 ...
- codevs 1078 最小生成树
题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 约翰已经给他的农场安排了一条高速的网络线路,他想把这 ...
- (Prim算法)codeVs 1078 最小生成树
题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 约翰已经给他的农场安排了一条高速的网络线路,他想把这 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 最小生成树 kruskal算法 codevs 1638 修复公路
1638 修复公路 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description A地区在地震过后,连接所有村庄的公 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 贪心算法-最小生成树Kruskal算法和Prim算法
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...
随机推荐
- Tensorflow 笔记:第一讲
一. 基本概念 1. 什么是人工智能 人工智能的概念: 机器模拟人的意识和思维 重要人物: 艾伦·麦席森·图灵( Alan Mathison Turing) 人物简介: 1912 年 6 月 23 日 ...
- [ACM] POJ 2409 Let it Bead (Polya计数)
参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...
- Spring 中的文件上传与下载控制
先创建根应用上下文配置,WebDemo/src/main/java/com/seliote/webdemo/config/RootContextConfig.java package com.seli ...
- C# 集合之Dictionary详解
开讲. 我们知道Dictionary的最大特点就是可以通过任意类型的key寻找值.而且是通过索引,速度极快. 该特点主要意义:数组能通过索引快速寻址,其他的集合基本都是以此为基础进行扩展而已. 但其索 ...
- responsive grid
http://csswizardry.com/csswizardry-grids/ http://unsemantic.com/demo-responsive http://getbootstrap. ...
- delphi 数据库中Connection与Query连接数量问题思考
今天闲着没事,测试了一下Connection连接MSSQL,可以承受多少连接. 1.看看ADOConnection的连接数:写了一个代码,动态创建,测试了10000个连接,花了大约5~10分钟创 ...
- struts2官方 中文教程 系列十一:使用XML进行表单验证
在本教程中,我们将讨论如何使用Struts 2的XML验证方法来验证表单字段中用户的输入.在前面的教程中,我们讨论了在Action类中使用validate方法验证用户的输入.使用单独的XML验证文件让 ...
- 使用TFS需要注意的地方
1. 用管理员添加了本地映射,然后用其他用户就添加不了映射,一定要先用管理员账户去把映射 删除掉: 2. 在正式使用TFS时,一定需要在VS工具的设置里面,设置一下,签出时自动获取最新的代码.(默认是 ...
- Anytime项目开发记录0
Anytime,中文名:我很忙. 开发者:孤独的猫咪神. 这个项目会持续更新,直到我决定不再维护这个APP. 2014年3月10日:近日有事,暂时断更.希望可以会尽快完事. 2014年3月27日:很抱 ...
- Linux-Qt Quick学习1-Hello world
Qt作为共平台的开发IDE.实在是强大,在Quick的学习中,与平台无关,我这里使用ubuntu和openSUSE,之所以不用Windows,是因为我想借这个机会过学习一点linux的东西,哪怕是熟悉 ...