[题目链接] https://www.luogu.org/problemnew/show/P4449

给定n,m,k,计算

\(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\)

对1000000007取模的结果

/*
-----------------------
基本套路:
1.枚举约数
2.枚举整除分块,观察倍数关系
3.发现g(T)是[积性函数],且g=μ*f.此时有很好的转移方法
if(i为质数) g[i]=f[i]-1
else{
if(i为某个质数整数幂) g[p^k]=g[p^(k-1)]*f[p]+f[1]*μ[p^k]
else g[i]=g[i/low[i]]*g[low[i]*prime[j]] 即把最小的约数都放到一起,以满足互质
}
4.预处理的初始化,g[1]=1.
-----------------------2019.2.15
*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=5e6+5;
const int mod=1e9+7; LL mu[MAXN],g[MAXN],f[MAXN],sum[MAXN],prime[MAXN],low[MAXN];
bool vis[MAXN];
int T,n,m,k; inline int qpow(int a,int b){
LL res=1;
while(b){
if(b&1) (res*=a)%=mod;
(a*=a)%=mod;
b>>=1;
}
return res;
} inline void init(int n){
mu[1]=1;
g[1]=1;//
for(int i=1;i<=n;i++)
f[i]=qpow(i,k);
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++prime[0]]=i;
mu[i]=-1;
low[i]=i;
g[i]=(f[i]-1)%mod;//i为质数的转移
}
for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0){
low[i*prime[j]]=low[i]*prime[j];
if(low[i]==i) //整次幂情况
g[i*prime[j]]=(g[i]*f[prime[j]])%mod;// +f[1]*mu[i*prime[j]]
else
g[i*prime[j]]=(g[i/low[i]]*g[low[i]*prime[j]])%mod;
break;
}
else{
g[i*prime[j]]=(g[i]*g[prime[j]])%mod;
low[i*prime[j]]=prime[j];//每个数只会由它最小的约数更新一次
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=1;i<=n;i++)
sum[i]=(sum[i-1]+g[i])%mod;
} signed main(){
//freopen("4449.in","r",stdin);
T=read(),k=read();
init(5e6);
while(T--){
n=read(),m=read();
if(n>m) swap(n,m);
LL ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
(ans+=(n/l)*(m/l)%mod*(sum[r]-sum[l-1]+mod)%mod)%=mod;
}
printf("%lld\n",ans);
}
}

P4449 于神之怒加强版 (莫比乌斯反演)的更多相关文章

  1. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  2. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  3. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  4. BZOJ4407 于神之怒加强版 - 莫比乌斯反演

    题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...

  5. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  6. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

  7. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  8. BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

    Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...

  9. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

  10. luogu4449 于神之怒加强版(莫比乌斯反演)

    link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...

随机推荐

  1. 【bzoj1602】[Usaco2008 Oct]牧场行走

    1602: [Usaco2008 Oct]牧场行走 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1793  Solved: 935[Submit][St ...

  2. 【bzoj1015】星球大战starwar

    1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 5139  Solved: 2332[Submit ...

  3. js(jquery)右键菜单插件的实现

    今天开发一个项目的时候需要一个模拟鼠标右键菜单的功能.也就是在网页点击鼠标右键的时候不是弹出系统的菜单而是我们制定的内容.这样可以拓展右键的功能.实现过程不多说了,写出来的代码和效果如下: js部分: ...

  4. Mask_RCNN caffe2

    cd DETECTRON/detectron/ python2 tools/infer_simple_ip_camera.py \    --cfg configs/12_2017_baselines ...

  5. Yii2验证登录得User类

    Yii2中的  Class yii\web\User 是如果进行验证登录,如果我们使用User类验证登录会给我们减少很多麻烦.在此就拿Yii2中自带的登录功能进行说明. 配置.在应用配置文件compo ...

  6. C语言多线程

    http://www.cnblogs.com/lixiaohui-ambition/archive/2012/07/26/2610336.html

  7. Capturing ASP.NET Application Startup Exceptions

    It has become common practice to perform tasks during an ASP.NET applications start up process. Thes ...

  8. Debian7安装后的配置(英文环境chromium浏览器中汉字变成方块的问题)

    原文来自:http://www.programgo.com/article/3272573017/ 1.安装文泉宋体 sudo aptitude install xfonts-wqy sudo apt ...

  9. C# How To Read .xlsx Excel File With 3 Lines Of Code

    Download Excel.zip - 9.7 KB Download ExcelDLL.zip - 3.7 KB Introduction We produce professional busi ...

  10. Fragment基本介绍

    1.生命周期 onCreateView() :创建视图 onActivityCreate():activity创建完成的时候调用 onDestoryView():销毁视图 onDetach():与ac ...