1D/1D优化dp之利用决策点的凸性优化
关于dp的优化之前做过一些简单的利用优先队列或者单调队列维护一个值就ok了,但有时候给出的方程很难直接用单调队列维护,需要转化一下思路。
这种优化方式利用数形结合,根据比较斜率来抛去一些非最优解,能将方程优化到线性,但对于一些更难得题目就需要一些数据结构维护,我暂时没接触过。
先用一道简单的题目来入手,hdu 3507 http://acm.hdu.edu.cn/showproblem.php?pid=3507
Print Article
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 13750 Accepted Submission(s): 4247
has an old printer that doesn't work well sometimes. As it is antique,
he still like to use it to print articles. But it is too old to work for
a long time and it will certainly wear and tear, so Zero use a cost to
evaluate this degree.
One day Zero want to print an article which has
N words, and each word i has a cost Ci to be printed. Also, Zero know
that print k words in one line will cost
M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
5
9
5
7
5
将小于j的点画在平面直角坐标系上,一如线性规划,把这条斜线自下往上平移时遇到的第一个点,即能使目前状态有最小值的点。于是我们需要维护一个下凸壳,把那些肯定不会贡献的点删掉。

#include<bits/stdc++.h>
using namespace std;
#define qz q.size()
int f[];
int sum[];
deque<int>q;
int dy(int i,int j){return f[j]-f[i]+sum[j]*sum[j]-sum[i]*sum[i];}
int dx(int i,int j){return sum[j]-sum[i];}
int main()
{
int N,M,i;
while(scanf("%d%d",&N,&M)==){
q.clear();
q.push_back();
for(i=;i<=N;++i)
{
scanf("%d",sum+i);
sum[i]+=sum[i-];
while(qz>&&dy(q[],q[])<=*dx(q[],q[])*sum[i]) q.pop_front();
f[i]=f[q.front()]+M+(sum[i]-sum[q.front()])*(sum[i]-sum[q.front()]);
while(qz>&&dy(q[qz-],i)*dx(q[qz-],q[qz-])<=dy(q[qz-],q[qz-])*dx(q[qz-],i))q.pop_back();
q.push_back(i);
}
printf("%d\n",f[N]);
}
return ;
}
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define qz q.size()
LL f[];
LL sum[];
int N,L;
deque<int>q;
LL dy(int i,int j,int a){
return (f[j]+(sum[j]-(a-j+-L))*(sum[j]-(a-j+-L)))-(f[i]+(sum[i]-(a-i+-L))*(sum[i]-(a-i+-L)));
}
LL dx(int i,int j,int a){return (sum[j]-(a-j+-L))-(sum[i]-(a-i+-L));}
int main()
{
int i;
while(scanf("%d%d",&N,&L)==){
q.clear();
q.push_back();
for(i=;i<=N;++i)
{
scanf("%d",sum+i);
sum[i]+=sum[i-];
}
for(i=;i<=N;++i)
{
while(qz>&&dy(q[],q[],i)<=*dx(q[],q[],i)*sum[i]) q.pop_front();
f[i]=f[q[]]+(sum[i]-sum[q[]]+i-q[]--L)*(sum[i]-sum[q[]]+i-q[]--L);
while(qz>&&dy(q[qz-],i,i)*dx(q[qz-],q[qz-],i)<=dy(q[qz-],q[qz-],i)*dx(q[qz-],i,i))q.pop_back();
q.push_back(i);
}
printf("%lld\n",f[N]);
}
return ;
}
1D/1D优化dp之利用决策点的凸性优化的更多相关文章
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- 『土地征用 Land Acquisition 斜率优化DP』
斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
- 关于单调性优化DP算法的理解
Part1-二分栈优化DP 引入 二分栈主要用来优化满足决策单调性的DP转移式. 即我们设\(P[i]\)为\(i\)的决策点位置,那么\(P[i]\)满足单调递增的性质的DP. 由于在这种DP中,满 ...
- 算法优化》关于1D*1D的DP的优化
关于这一主题的DP问题的优化方法,我以前写过一篇博客与其有关,是关于对递推形DP的前缀和优化,那么这种优化方法就不再赘述了. 什么叫1D*1D的DP捏,就是一共有N种状态,而每种状态都要N种决策,这就 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
随机推荐
- PHP多线程pthreads
Home | 简体中文 | 繁体中文 | 杂文 | Search | ITEYE 博客 | OSChina 博客 | Facebook | Linkedin | 作品与服务 | EmailPHP 高级 ...
- 保存到properties
@FXMLprivate void savaconfig(ActionEvent event) { try { Properties prop = new Properties(); FileWrit ...
- 0x09 Python连接MySQL数据库
本文介绍Python3连接MySQL的第三方库--PyMySQL的基本使用. PyMySQL介绍 PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中 ...
- Linux中的grep和cut
提取行: grep --color 着色 -v 不包含 提取列: cut -f 列号 提取第几列 -d 分隔符 以什么为分隔符,默认是制表键 局限性:如果分隔符不那 ...
- python requests 使用
快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其假设你已经安装了 Requests.如果还没有,去安装一节看看吧. 首先,确认一下: Requests 已安装 Req ...
- 蒙特卡罗树搜索(MCTS)【转】
简介 最近AlphaGo Zero又火了一把,paper和各种分析文章都有了,有人看到了说不就是普通的Reinforcement learning吗,有人还没理解估值网络.快速下子网络的作用就放弃了. ...
- 脉冲神经网络及有监督学习算法Tempotron
接下来一段时间开启脉冲神经网络模型的探索之旅.脉冲神经网络有更强的生物学基础,尽可能地模拟生物神经元之间的连接和通信方式.其潜在能力较强,值得踏进一步探索. 构建脉冲神经网络模型,至少需要考虑三点:1 ...
- (扫盲)C#中out和ref之间的区别
首先:两者都是按地址传递的,使用后都将改变原来参数的数值. 其次:ref可以把参数的数值传递进函数,但是out是要把参数清空,就是说你无法把一个数值从out传递进去的,out进去后,参数的数值为空,所 ...
- 【转】Python爬虫_示例2
爬虫项目:爬取并筛选拉钩网职位信息自动提交简历 一 目标站点分析 #一:实验前准备: 浏览器用Chrome 用Ctrl+Shift+Delete清除浏览器缓存的Cookie 打开network准备 ...
- NetCDF 介绍
NetCDF 1 NetCDF 1.1概述(Overview) NetCDF (network Common Data Form) is a set of software libraries and ...